[1] 史彩娟, 张卫明, 陈厚儒, 等. 基于深度学习的显著性目标检测综述[J]. 计算机科学与探索, 2021, 15(2): 219-232.
SHI C J, ZHANG W M, CHEN H R, et al. Survey of salient object detection based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 219-232.
[2] 赵宏伟, 霍东升, 王洁, 等. 基于显著性检测的害虫图像分类[J]. 吉林大学学报(工学版), 2021, 51(6): 2174-2181.
ZHAO H W, HUO D S, WANG J, et al. Image classification of insect pests based on saliency detection[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2174-2181.
[3] 钱晓亮, 曾银凤, 林生, 等. 融合自适应窗口显著性检测和改进超像素分割的高光谱异常检测[J]. 遥感学报, 2023, 27(12): 2748-2761.
QIAN X L, ZENG Y F, LIN S, et al. Hyperspectral anomaly detection via combining adaptive window saliency detection and improved superpixel segmentation[J]. National Remote Sensing Bulletin, 2023, 27(12): 2748-2761.
[4] LIU Z Y, SHI S, DUAN Q T, et al. Salient object detection for RGB-D image by single stream recurrent convolution neural network[J]. Neurocomputing, 2019, 363: 46-57.
[5] HAN J W, CHEN H, LIU N, et al. CNNs-based RGB-D saliency detection via cross-view transfer and multiview fusion[J]. IEEE Transactions on Cybernetics, 2018, 48(11): 3171-3183.
[6] WU Z W, ALLIBERT G, MERIAUDEAU F, et al. HiDAnet: RGB-D salient object detection via hierarchical depth awareness[J]. IEEE Transactions on Image Processing, 2023, 32: 2160-2173.
[7] 孟令兵, 袁梦雅, 时雪涵, 等. 跨模态融合和边界可变形卷积引导的RGB-D显著性目标检测[J]. 电子学报, 2023, 51(11): 3155-3166.
MENG L B, YUAN M Y, SHI X H, et al. RGB-D salient object detection based on cross-modal fusion and boundary deformable convolution guidance[J]. Acta Electronica Sinica, 2023, 51(11): 3155-3166.
[8] JU R, GE L, GENG W J, et al. Depth saliency based on anisotropic center-surround difference[C]//Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway: IEEE, 2014: 1115-1119.
[9] PENG H W, LI B, XIONG W H, et al. RGBD salient object detection: a benchmark and algorithms[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 92-109.
[10] NIU Y Z, GENG Y J, LI X Q, et al. Leveraging stereopsis for saliency analysis[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 454-461.
[11] FAN D P, LIN Z, ZHANG Z, et al. Rethinking RGB-D salient object detection: models, data sets, and large-scale benchmarks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 2075-2089.
[12] PANG Y W, ZHAO X Q, ZHANG L H, et al. CAVER: cross-modal view-mixed transformer for bi-modal salient object detection[J]. IEEE Transactions on Image Processing, 2023, 32: 892-904.
[13] LIU N, ZHANG N, WAN K Y, et al. Visual saliency transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4702-4712.
[14] LIU Z Y, WANG Y, TU Z Z, et al. TriTransNet: RGB-D salient object detection with a triplet transformer embedding network[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 4481-4490.
[15] LIU Z Y, TAN Y C, HE Q, et al. SwinNet: swin transformer drives edge-aware RGB-D and RGB-T salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7): 4486-4497.
[16] CONG R M, LIU H Y, ZHANG C, et al. Point-aware interaction and CNN-induced refinement network for RGB-D salient object detection[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York: ACM, 2023: 406-416.
[17] ZHOU T, FU H Z, CHEN G, et al. Specificity-preserving RGB-D saliency detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4661-4671.
[18] JI W, LI J J, YU S, et al. Calibrated RGB-D salient object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9466-9476.
[19] LEE M, PARK C, CHO S, et al. SPSN: superpixel prototype sampling network for RGB-D salient object detection[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 630-647.
[20] LI G Y, LIU Z, CHEN M Y, et al. Hierarchical alternate interaction network for RGB-D salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 3528-3542. |