Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (3): 718-730.DOI: 10.3778/j.issn.1673-9418.2301050
• Graphics·Image • Previous Articles Next Articles
XUE Jinqiang, WU Qin
Online:
2024-03-01
Published:
2024-03-01
薛金强,吴秦
XUE Jinqiang, WU Qin. Lightweight Cross-Gating Transformer for Image Restoration and Enhancement#br# #br#[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 718-730.
薛金强, 吴秦. 面向图像复原和增强的轻量级交叉门控Transformer[J]. 计算机科学与探索, 2024, 18(3): 718-730.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2301050
[1] CHENG S, WANG Y, HUANG H, et al. NBNet: noise basis learning for image denoising with subspace projection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 4896-4906. [2] CHANG M, LI Q, FENG H, et al. Spatial-adaptive network for single image denoising[C]//Proceedings of the 16th European Conference on Computer Vision, Oct 23-27, 2020.Cham: Springer, 2020: 171-187. [3] KIM Y, SOH J W, PARK G Y, et al. Transfer learning from synthetic to real-noise denoising with adaptive instance normalization[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 13-19, 2020. Piscataway: IEEE, 2020: 3482-3492. [4] GUO S, YAN Z, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1712-1722. [5] FAN C M, LIU T J, LIU K H, et al. Selective residual M-Net for real image denoising[C]//Proceedings of the 30th European Signal Processing Conference, Aug 29-Sep 2, 2022. Piscataway: IEEE, 2022: 469-473. [6] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. [7] ISOLA P, ZHU J, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5967-5976. [8] ZAMIR S W, ARORA A, KHAN S, et al. Learning enriched features for real image restoration and enhancement[C]//Proceedings of the 16th European Conference on Computer Vision, Oct 23-27, 2020. Cham: Springer, 2020: 492-511. [9] ANWAR S, BARNES N. Real image denoising with feature attention[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 3155-3164. [10] ZAMIR S W, ARORA A, KHAN S, et al. CycleISP: real image restoration via improved data synthesis[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2693-2702. [11] 李明悦, 晏涛, 井花花, 等. 多尺度特征融合的低照度光场图像增强算法[J]. 计算机科学与探索, 2023, 17(8): 1904-1916. LI M Y, YAN T, JING H H, et al. Low-light enhancement method for light field images by fusing multi-scale features[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1904-1916. [12] 曹义亲, 饶哲初, 朱志亮, 等. 双通道四元数卷积网络去噪方法[J]. 计算机科学与探索, 2023, 17(6): 1359-1372. CAO Y Q, RAO Z C, ZHU Z L, et al. Dual-channel quaternion convolutional network for denoising[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1359-1372. [13] 曹义亲, 饶哲初, 朱志亮, 等. DnRFD: 用于图像去噪的递进式残差融合密集网络[J]. 计算机科学与探索, 2022, 16(12): 2841-2850. CAO Y Q, RAO Z C, ZHU Z L, et al. DnRFD: progressive residual fusion dense network for image denoising[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2841-2850. [14] ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021:14816-14826. [15] CHEN L, LU X, ZHANG J, et al. HINet: half instance normalization network for image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 182-192. [16] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 9992-10002. [17] ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [18] WANG Z, CUN X, BAO J, et al. Uformer: a general U-shaped transformer for image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 17683-17693. [19] 郭银景, 马新瑞, 许越铖, 等. 水下光声图像空间配准算法研究综述[J]. 计算机工程与应用, 2023, 59(5): 14-27. GUO Y J, MA X R, XU Y C, et al. Overview of research on spatial registration algorithms of underwater opti-acoustic images[J]. Computer Engineering and Applications, 2023,59(5): 14-27. [20] 王凡, 赵宏伟, 刘俊博, 等. 高速铁路运行环境视频自适应去模糊方法[J]. 计算机工程与应用, 2022, 58(21): 258-263. WANG F, ZHAO H W, LIU J B, et al. Adaptive blur removal method of operating environment video for high-speed railway[J]. Computer Engineering and Applications, 2022, 58(21): 258-263. [21] 郭威, 张有波, 周悦, 等. 应用于水下机器人的快速深海图像复原算法[J]. 光学学报, 2022, 42(4): 61-75. GUO W, ZHANG Y B, ZHOU Y, et al. Rapid deep-sea image restoration algorithm applied to unmanned underwater vehicles[J]. Acta Optica Sinica, 2022, 42(4): 61-75. [22] CHO S C, JI S W, HONG J P, et al. Rethinking coarse-to-fine approach in single image deblurring[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 4621-4630. [23] YUE Z, YONG H, ZHAO Q, et al. Variational denoising network: toward blind noise modeling and removal[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 1690-1701. [24] YUE Z, ZHAO Q, ZHANG L, et al. Dual adversarial network: toward real-world noise removal and noise generation[C]//Proceedings of the 16th European Conference on Computer Vision, Oct 23-27, 2020. Cham: Springer, 2020: 41-58. [25] CHO K, MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1724-1734. [26] ABDELHAMED A, LIN S, BROWN M S. A high-quality denoising dataset for smartphone cameras[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 1692-1700. [27] PLOTZ T, ROTH S. Benchmarking denoising algorithms with real photographs[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1586-1595. [28] BYCHKOVSKY V, PARIS S, CHAN E, et al. Learning photographic global tonal adjustment with a database of input/output image pairs[C]//Proceedings of the 2011 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Colorado, Jun 20-25, 2011. Piscataway: IEEE, 2011: 97-104. [29] WEI C, WANG W, YANG W, et al. Deep retinex decomposition for low-light enhancement[C]//Proceedings of the 2018 British Machine Vision Conference, Newcastle, Sep 3-6, 2018: 155. [30] JIANG K, WANG Z, YI P, et al. Multi-scale progressive fusion network for single image deraining[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 8346-8355. [31] YANG W, TAN R T, FENG J, et al. Joint rain detection and removal via iterative region dependent multi-task learning[EB/OL]. [2022-11-12]. http://arxiv.org/abs/1609.07769. [32] ZHANG H, SINDAGI V, PATEL V M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 3943-3956. [33] ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018.Piscataway: IEEE, 2018: 695-704. [34] FU X, HUANG J, ZENG D, et al. Removing rain from single images via a deep detail network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1715-1723. [35] JOSUE A, ADRIAN B. RENOIR—a dataset for real low-light image noise reduction[J]. Journal of Visual Communication and Image Representation, 2018, 51: 144-154. [36] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. [37] FAN C, LIU T, LIU K. Half wavelet attention on M-Net+ for low-light image enhancement[EB/OL]. [2022-11-12]. https://arxiv.org/abs/2203.01296. [38] JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Tran-sactions on Image Processing, 2021, 30: 2340-2349. [39] CHEN Y S, WANG Y C, KAO M H, et al. Deep photo enhancer: unpaired learning for image enhancement from photo-graphs with GANs[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 6306-6314. [40] NI Z, YANG W, WANG S, et al. Towards unsupervised deep image enhancement with generative adversarial network[J]. IEEE Transactions on Image Processing, 2020, 29: 9140-9151. [41] CHEN Z, HUANG Y, HU Z, et al. Landscape and dynamics of single tumor and immune cells in early and advanced-stage lung adenocarcinoma[J]. Clinical and Translational Medicine, 2021, 11(3): e350. [42] ZHANG Y, GUO X, MA J, et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 2021, 129(4): 1013-1037. [43] WEI W, MENG D, ZHAO Q, et al. Semi-supervised transfer learning for image rain removal[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 3872-3881. [44] YASARLA R, PATEL V M. Uncertainty guided multi-scale residual learning-using a cycle spinning CNN for single image de-raining[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 8405-8414. [45] LI X, WU J, LIN Z, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 262-277. [46] REN D, ZUO W, HU Q, et al. Progressive image deraining networks: a better and simpler baseline[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 3937-3946. [47] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Piscataway: IEEE, 2016: 770-778. |
[1] | SUN Shuifa, TANG Yongheng, WANG Ben, DONG Fangmin, LI Xiaolong, CAI Jiacheng, WU Yirong. Review of Research on 3D Reconstruction of Dynamic Scenes [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 831-860. |
[2] | WANG Enlong, LI Jiawei, LEI Jia, ZHOU Shihua. Deep Learning-Based Infrared and Visible Image Fusion: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 899-915. |
[3] | CAO Chuanbo, GUO Chun, LI Xianchao, SHEN Guowei. Cryptomining Malware Early Detection Method Based on AECD Embedding [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 1083-1093. |
[4] | LAN Xin, WU Song, FU Boyi, QIN Xiaolin. Survey on Deep Learning in Oriented Object Detection in Remote Sensing Images [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 861-877. |
[5] | ZHOU Yan, LI Wenjun, DANG Zhaolong, ZENG Fanzhi, YE Dewang. Survey of 3D Model Recognition Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(4): 916-929. |
[6] | GONG Ying, XU Wentao, ZHAO Ce, WANG Binjun. Review of Application of Generative Adversarial Networks in Image Restoration [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 553-573. |
[7] | YANG Chaocheng, YAN Xuanhui, CHEN Rongjun, LI Hanzhang. Time Series Anomaly Detection Model with Dual Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 740-754. |
[8] | CHEN Qian, HONG Zheng, SI Jianpeng. Application Layer Protocol Recognition Incorporating SENet and Transformer [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 805-817. |
[9] | SHEN Tong, WANG Shuo, LI Meng, QIN Lunming. Research Progress in Application of Deep Learning in Animal Behavior Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 612-626. |
[10] | WANG Yan, NAN Peiqi. MFFNet: Image Semantic Segmentation Network of Multi-level Feature Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 707-717. |
[11] | WANG Yifan, LIU Jing, MA Jingang, SHAO Runhua, CHEN Tianzhen, LI Ming. Application Progress of Deep Learning in Imaging Examination of Breast Cancer [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 301-319. |
[12] | PENG Bin, BAI Jing, LI Wenjing, ZHENG Hu, MA Xiangyu. Survey on Visual Transformer for Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. |
[13] | WANG Kun, GUO Wei, WANG Zunyan, HAN Wenqiang. Review of Bare Footprint Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 44-57. |
[14] | WANG Chunmei, LIU Huan. YOLOv8-VSC: Lightweight Algorithm for Strip Surface Defect Detection [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160. |
[15] | GAO Jie, ZHAO Xinxin, YU Jian, XU Tianyi, PAN Li, YANG Jun, YU Mei, LI Xuewei. Counting Method Based on Density Graph Regression and Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 127-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/