[1] 吴正洋, 汤庸, 刘海. 个性化学习推荐研究综述[J]. 计算机科学与探索, 2022, 16(1): 21-40.
WU Z Y, TANG Y, LIU H. Survey of personalized learning recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 21-40.
[2] 何登溢. “互联网+” 视角下我国在线教育产业成长前景研究[J]. 贵州财经大学学报, 2018(2): 70-77.
HE D Y. China online education industry present situation and development of research: based on the “Internet plus” perspective[J]. Journal of Guizhou University of Finance and Economics, 2018(2): 70-77.
[3] CHEN X, SUN Y H, ZHOU T, et al. Recommending online course resources based on knowledge graph[C]//Proceedings of the 2022 International Conference on Web Information Systems and Applications. Cham: Springer, 2022: 581-588.
[4] 马骁睿, 徐圆, 朱群雄. 一种结合深度知识追踪的个性化习题推荐方法[J]. 小型微型计算机系统, 2020, 41(5): 990-995.
MA X R, XU Y, ZHU Q X. Personalized exercises recommendation method based on deep knowledge tracing[J]. Journal of Chinese Computer Systems, 2020, 41(5): 990-995.
[5] HUANG Z Y, LIU Q, ZHAI C X, et al. Exploring multi-objective exercise recommendations in online education systems[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1261-1270.
[6] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285-295.
[7] LI J, YE Z. Course recommendations in online education based on collaborative filtering recommendation algorithm[J]. Complexity, 2020(1): 6619249.
[8] 吴云峰, 冯筠, 孙霞, 等. 基于多分类器的迁移Bagging习题推荐[J]. 计算机应用, 2013, 33(7): 1950-1954.
WU Y F, FENG E, SUN X, et al. Online transfer-Bagging question recommendation based on hybrid classifiers[J]. Journal of Computer Applications, 2013, 33(7): 1950-1954.
[9] SEGAL A, KATZIR Z, GAL K, et al. EduRank: a collaborative filtering approach to personalization in E-learning[C]//Proceedings of the 7th International Conference on Educational Data Mining, 2014: 68-75.
[10] FAN X T. Item response theory and classical test theory: an empirical comparison of their item/person statistics[J]. Educational and Psychological Measurement, 1998, 58(3): 357-381.
[11] DE LA TORRE J. DINA model and parameter estimation: a didactic[J]. Journal of Educational and Behavioral Statistics, 2009, 34(1): 115-130.
[12] CARLSON J E. Multidimensional item response theory models[M]//Introduction to item response theory models and applications. New York: Routledge, 2020: 101-119.
[13] CHENG S, LIU Q, CHEN E H, et al. DIRT: deep learning enhanced item response theory for cognitive diagnosis[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2397-2400.
[14] OZAKI K. DINA models for multiple-choice items with few parameters: considering incorrect answers[J]. Applied Psychological Measurement, 2015, 39(6): 431-447.
[15] 朱天宇, 黄振亚, 陈恩红, 等. 基于认知诊断的个性化试题推荐方法[J]. 计算机学报, 2017, 40(1): 176-191.
ZHU T Y, HUANG Z Y, CHEN E H, et al. Cognitive diagnosis based personalized question recommendation[J]. Chinese Journal of Computers, 2017, 40(1): 176-191.
[16] WANG F, LIU Q, CHEN E H, et al. Neural cognitive diagnosis for intelligent education systems[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 6153-6161.
[17] 刘淇, 陈恩红, 朱天宇, 等. 面向在线智慧学习的教育数据挖掘技术研究[J]. 模式识别与人工智能, 2018, 31(1): 77-90.
LIU Q, CHEN E H, ZHU T Y, et al. Research on educational data mining for online intelligent learning[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 77-90.
[18] CORBETT A T, ANDERSON J R. Knowledge tracing: modeling the acquisition of procedural knowledge[J]. User Modeling and User-Adapted Interaction, 1994, 4(4): 253-278.
[19] ZHANG K, YAO Y Y. A three learning states Bayesian knowledge tracing model[J]. Knowledge-Based Systems, 2018, 148: 189-201.
[20] AGARWAL D, BAKER R, MURALEEDHARAN A. Dynamic knowledge tracing through data driven recency weights[C]//Proceedings of the 13th International Conference on Educational Data Mining, 2020: 725-729.
[21] 黄诗雯, 刘朝晖, 罗凌云, 等. 融合行为和遗忘因素的贝叶斯知识追踪模型研究[J]. 计算机应用研究, 2021, 38(7): 1993-1997.
HUANG S W, LIU Z H, LUO L Y, et al. Research on Bayesian knowledge tracking model integrating behavior and forgetting factors[J]. Application Research of Computers, 2021, 38(7): 1993-1997.
[22] CHIRS P, JONATHAN B, JONATHAN H, et al. Deep knowledge tracing[C]//Advances in Neural Information Processing Systems 28, 2015: 505-513.
[23] ZHANG L, XIONG X L, ZHAO S Y, et al. Incorporating rich features into deep knowledge tracing[C]//Proceedings of the 4th ACM Conference on Learning@Scale. New York: ACM, 2017: 169-172.
[24] MINN S, YU Y, DESMARAIS M C, et al. Deep knowledge tracing and dynamic student classification for knowledge tracing[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 1182-1187.
[25] LIU D, ZHANG Y P, ZHANG J, et al. Multiple features fusion attention mechanism enhanced deep knowledge tracing for student performance prediction[J]. IEEE Access, 2020, 8: 194894-194903.
[26] ZHANG J N, SHI X J, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017: 765-774.
[27] AI F, CHEN Y, GUO Y, et al. Concept-aware deep knowledge tracing and exercise recommendation in an online learning system[C]//Proceedings of the 12th International Conference on Educational Data Mining, 2019.
[28] HEFFERNAN P. Assistment-2009-2010[EB/OL]. [2024-05-26]. https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data.
[29] BIER N. Statics2011[EB/OL]. [2024-05-26]. https://pslcdatashop. web.cmu.edu/.
[30] CHANG H S. Assistment-2015[EB/OL]. [2024-05-26]. https:// sites.google.com/site/assistmentsdata/home/2015-assistments- skill-builder-data.
[31] LIU G, HAO T Y. User-based question recommendation for question answering system[J]. International Journal of Information and Education Technology, 2012, 2(3): 243-246.
[32] KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206.
[33] WU Z Y, LI M, TANG Y, et al. Exercise recommendation based on knowledge concept prediction[J]. Knowledge-Based Systems, 2020, 210: 106481.
[34] REN Y M, LIANG K, SHANG Y H, et al. MulOER-SAN: 2-layer multi-objective framework for exercise recommendation with self-attention networks[J]. Knowledge-Based Systems, 2023, 260: 110117. |