[1] ZHOU X, WANG D, KR?HENBüHL P. Objects as points[J]. arXiv:1904.07850, 2019.
[2] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[3] HAN S, MAO H, DALLY W J. Deep compression: com-pressing deep neural networks with pruning, trained quan-tization and Huffman coding[J]. arXiv:1510.00149, 2015.
[4] 张良, 张增, 舒伟华, 等. 基于YOLOv3的卷积层结构化剪枝[J]. 计算机工程与应用, 2021, 57(6): 131-137.
ZHANG L, ZHANG Z, SHU W H, et al. Convolutional layered pruning based on YOLOv3[J]. Computer Engineering and Applications, 2021, 57(6): 131-137.
[5] 张宏丽, 白翔宇. 利用优化剪枝GoogLeNet的人脸表情识别方法[J]. 计算机工程与应用, 2021, 57(19): 179-188.
ZHANG H L, BAI X Y. Facial expression recognition method using optimized pruning GoogLeNet[J]. Computer Engineering and Applications, 2021, 57(19): 179-188.
[6] HE Y, ZHANG X, SUN J. Channel pruning for accelerating very deep neural networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1398-1406.
[7] LUO J H, WU J, LIN W, et al. ThiNet: a filter level pruning method for deep neural network compression[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5058-5066.
[8] YU R, LI A, CHEN C F, et al. NISP: pruning networks using neuron importance score propagation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 9194-9203.
[9] SONG F, WANG Y, GUO Y, et al. A channel-level pruning strategy for convolutional layers in CNNs[C]//Proceedings of the 2018 International Conference on Network Infrastru-cture and Digital Content, Guiyang, Aug 22-24, 2018. Pis-cataway: IEEE, 2018: 135-139.
[10] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[11] YAMAMOTO K, MAENO K. PCAS: pruning channels with attention statistics for deep network compression[J]. arXiv:1806.05382, 2018.
[12] XIE S N, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Pro-ceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Was-hington: IEEE Computer Society, 2017: 5987-5995.
[13] LI X, HU X, YANG J. Spatial group-wise enhance: improving semantic feature learning in convolutional networks[J]. arXiv:1905.09646, 2019.
[14] FU J L, ZHENG H L, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4438-4446.
[15] ZHANG R. Making convolutional networks shift-invariant again[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 7324-7334.
[16] SCHERER D, MüLLER A, BEHNKE S. Evaluation of pooling operations in convolutional architectures for object recognition[C]//LNCS 6354: Proceedings of the Interna-tional Conference on Artificial Neural Networks, Thessalo-niki, Sep 15-18, 2010. Berlin, Heidelberg: Springer, 2010: 92-101.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[18] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11531-11539.
[19] WU Y X, HE K M. Group normalization[C]//LNCS 11217:Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham:Springer, 2018: 3-19.
[20] XU K, BA J, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[C]//Procee-dings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 2048-2057.
[21] GAO X, ZHAO Y, DUDZIAK ?, et al. Dynamic channel pruning: feature boosting and suppression[J]. arXiv:1810. 05331, 2018.
[22] ZHUANG Z, TAN M, ZHUANG B, et al. Discrimination-aware channel pruning for deep neural networks[J]. arXiv: 1810.11809, 2018.
[23] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015: 91-99.
[24] DAI J, LI Y, HE K, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems 29, Barcelona, Dec 5-10, 2016: 379-387.
[25] REDMON J, FARHADI A. YOLOv3: an incremental im-provement[J]. arXiv:1804.02767, 2018.
[26] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[27] FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017.
[28] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully con-volutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9626-9635. |