
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (6): 1476-1493.DOI: 10.3778/j.issn.1673-9418.2407079
• Frontiers·Surveys • Previous Articles Next Articles
ZHU Jiayin, LI Yang, LI Ming, MA Jingang
Online:2025-06-01
Published:2025-05-29
朱佳音,李杨,李明,马金刚
ZHU Jiayin, LI Yang, LI Ming, MA Jingang. Review of Application of Deep Learning in Cervical Cell Segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1476-1493.
朱佳音, 李杨, 李明, 马金刚. 深度学习在宫颈细胞分割中的应用综述[J]. 计算机科学与探索, 2025, 19(6): 1476-1493.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2407079
| [1] SINGH D, VIGNAT J, LORENZONI V, et al. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative[J]. The Lancet Global Health, 2023, 11(2): 197-206. [2] 王苏蒙, 闫慧姣, 任文辉, 等. 中国宫颈癌防控进展[J]. 中国预防医学杂志, 2023, 24(12): 1366-1370. WANG S M, YAN H J, REN W H, et al. Progress in cervical cancer prevention and control in China[J]. Chinese Preventive Medicine, 2023, 24(12): 1366-1370. [3] WENTZENSEN N, CLARKE M A. Cervical cancer screening-past, present, and future[J]. Cancer Epidemiology, Biomarkers & Prevention, 2021, 30(3): 432-434. [4] 李艳, 王楠, 张青, 等. 宫颈病变患者高危HPV感染筛查方法及应用[J]. 中华医院感染学杂志, 2023, 33(22): 3461-3465. LI Y, WANG N, ZHANG Q, et al. Screening methods of high-risk HPV infection among cervical lesion patients and their application[J]. Chinese Journal of Nosocomiology, 2023, 33(22): 3461-3465. [5] MREMI A, MCHOME B, MLAY J, et al. Performance of HPV testing, Pap smear and VIA in women attending cervical cancer screening in Kilimanjaro region, Northern Tanzania: a cross-sectional study nested in a cohort[J]. BMJ Open, 2022, 12(10): e064321. [6] 吴志丽, 徐岚. 宫颈癌早期筛查与预防的研究进展[J]. 癌变·畸变·突变, 2023, 35(4): 310-315. WU Z L, XU L. Research progress of early screening and prevention of cervical cancer[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(4): 310-315. [7] 吴嘉敏, 郑睿敏, 马兰, 等. 我国部分地区妇女“两癌”筛查现状分析[J]. 中国健康教育, 2022, 38(4): 334-338. WU J M, ZHENG R M, MA L, et al. Analysis on the status of the screening for cervical cancer and breast cancer of women in some region of China[J]. Chinese Journal of Health Education, 2022, 38(4): 334-338. [8] 林霞. 两癌筛查对女性健康的作用[J]. 中国医药指南, 2023, 21(30): 67-69. LIN X. The effect of two cancer screening on women’s health[J]. Guide of China Medicine, 2023, 21(30): 67-69. [9] CHEN H, LIU J, WEN Q M, et al. CytoBrain: cervical cancer screening system based on deep learning technology[J]. Journal of Computer Science and Technology, 2021, 36(2): 347-360. [10] 姜良, 张程, 魏德健, 等. 深度学习在骨质疏松辅助诊断中的应用[J]. 计算机工程与应用, 2024, 60(7): 26-40. JIANG L, ZHANG C, WEI D J, et al. Deep learning in aided diagnosis of osteoporosis[J]. Computer Engineering and Applications, 2024, 60(7): 26-40. [11] RAHAMAN M M, LI C, WU X C, et al. A survey for cervical cytopathology image analysis using deep learning[J]. IEEE Access, 2020, 8: 61687-61710. [12] LI C, CHEN H, LI X Y, et al. A review for cervical histopathology image analysis using machine vision approaches[J]. Artificial Intelligence Review, 2020, 53(7): 4821-4862. [13] JIANG P, LI X K, SHEN H, et al. A systematic review of deep learning-based cervical cytology screening: from cell identification to whole slide image analysis[J]. Artificial Intelligence Review, 2023, 56(2): 2687-2758. [14] JANTZEN J, NORUP J, DOUNIAS G, et al. Papsmear benchmark data for pattern classification[C]//Proceedings of the Nature Inspired Smart Information Systems, 2005: 1-9. [15] LU Z, CARNEIRO G, BRADLEY A P, et al. Evaluation of three algorithms for the segmentation of overlapping cervical cells[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(2): 441-450. [16] CHEN J, ZHANG B. Segmentation of overlapping cervical cells with mask region convolutional neural network[J]. Computational and Mathematical Methods in Medicine, 2021(1): 3890988. [17] PLISSITI M E, DIMITRAKOPOULOS P, SFIKAS G, et al. Sipakmed: a new dataset for feature and image based classification of normal and pathological cervical cells in pap smear images[C]//Proceedings of the 2018 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 3144-3148. [18] LIU G Q, DING Q H, LUO H B, et al. Cx22: a new publicly available dataset for deep learning-based segmentation of cervical cytology images[J]. Computers in Biology and Medicine, 2022, 150: 106194. [19] ZHAO J, HE Y J, ZHOU S H, et al. CNSeg: a dataset for cervical nuclear segmentation[J]. Computer Methods and Programs in Biomedicine, 2023, 241: 107732. [20] WANG Z B, WANG E, ZHU Y. Image segmentation evaluation: a survey of methods[J]. Artificial Intelligence Review, 2020, 53(8): 5637-5674. [21] KHUDOV H, MAKOVEICHUK O, KHIZHNYAK I, et al. The choice of quality indicator for the image segmentation evaluation[J]. International Journal of Emerging Technology and Advanced Engineering, 2022, 12(10): 95-103. [22] HENDERSON P, FERRARI V. End-to-end training of object class detectors for mean average precision[C]//Proceedings of the 13th Asian Conference on Computer Vision. Cham: Springer, 2017: 198-213. [23] ZIJDENBOS A P, DAWANT B M, MARGOLIN R A, et al. Morphometric analysis of white matter lesions in MR images: method and validation[J]. IEEE Transactions on Medical Imaging, 1994, 13(4): 716-724. [24] KUMAR N, VERMA R, SHARMA S, et al. A dataset and a technique for generalized nuclear segmentation for computational pathology[J]. IEEE Transactions on Medical Imaging, 2017, 36(7): 1550-1560. [25] KIRILLOV A, HE K M, GIRSHICK R, et al. Panoptic segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9396-9405. [26] MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3523-3542. [27] WANG X Z, ZHAO Y X, POURPANAH F. Recent advances in deep learning[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(4): 747-750. [28] LI Z W, LIU F, YANG W J, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 6999-7019. [29] SULTANA F, SUFIAN A, DUTTA P. Evolution of image segmentation using deep convolutional neural network: a survey[J]. Knowledge-Based Systems, 2020, 201: 106062. [30] 郭佳霖, 智敏, 殷雁君, 等. 图像处理中CNN与视觉Transformer混合模型研究综述[J]. 计算机科学与探索, 2025, 19(1): 30-44. GUO J L, ZHI M, YIN Y J, et al. Review of research on CNN and visual Transformer hybrid models in image processing[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 30-44. [31] ZHAO Y L, FU C, ZHANG W C, et al. Automatic segmentation of cervical cells based on star-convex polygons in pap smear images[J]. Bioengineering, 2023, 10(1): 47. [32] HAO X L, PEI L L, LI W, et al. An improved cervical cell segmentation method based on deep convolutional network[J]. Mathematical Problems in Engineering, 2022(1): 7383573. [33] WAN T, XU S S, SANG C, et al. Accurate segmentation of overlapping cells in cervical cytology with deep convolutional neural networks[J]. Neurocomputing, 2019, 365: 157-170. [34] HU H X, ZHANG J Y, YANG T J, et al. CNAC-Seg: effective segmentation for cervical nuclei in adherent cells and clusters via exploring gaps of receptive fields[J]. Biomedical Signal Processing and Control, 2024, 90: 105833. [35] LUO D, KANG H T, LONG J N, et al. Dual supervised sampling networks for real-time segmentation of cervical cell nucleus[J]. Computational and Structural Biotechnology Journal, 2022, 20: 4360-4368. [36] XU S S, SANG C, JIN Y L, et al. Robust segmentation of overlapping cells in cervical cytology using light convolution neural network[C]//Proceedings of the 25th International Conference on Neural Information Processing. Cham: Springer, 2018: 387-397. [37] YIN Y Y, LUO S L, ZHOU J, et al. LDCNet: lightweight dynamic convolution network for laparoscopic procedures image segmentation[J]. Neural Networks, 2024, 170: 441-452. [38] GUAN R C, WANG M M, BRUZZONE L, et al. Lightweight attention network for very high-resolution image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4403514. [39] ZHANG B Z, WANG X Y, LIU L G, et al. CeLNet: a correlation-enhanced lightweight network for medical image segmentation[J]. Physics in Medicine & Biology, 2023, 68(11): 115012. [40] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [41] 崔珂, 田启川, 廉露. 基于U-Net变体的医学图像分割算法综述[J]. 计算机工程与应用, 2024, 60(11): 32-49. CUI K, TIAN Q C, LIAN L. Review of medical image segmentation algorithms based on U-Net variants[J]. Computer Engineering and Applications, 2024, 60(11): 32-49. [42] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368. [43] 祁宣豪, 智敏. 图像处理中注意力机制综述[J]. 计算机科学与探索, 2024, 18(2): 345-362. QI X H, ZHI M. Review of attention mechanisms in image processing[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 345-362. [44] CHOWDARY G J, SUGANYA G, PREMALATHA M, et al. Nucleus segmentation and classification using residual SE-UNet and feature concatenation approach incervical cytopathology cell images[J]. Technology in Cancer Research & Treatment, 2023, 22. [45] 张玉琦, 李捷, 王巍, 等. 基于注意力机制的多尺度特征融合网络用于宫颈细胞核分割[J]. 计算机应用, 2022, 42(S2): 259-266. ZHANG Y Q, LI J, WANG W, et al. Multi-scale feature fusion network for cervical nucleus segmentation based on attention mechanism[J]. Journal of Computer Applications, 2022, 42(S2): 259-266. [46] ZHAO J, HE Y J, ZHAO S Q, et al. AL-net: attention learning network based on multi-task learning for cervical nucleus segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(6): 2693-2702. [47] 令狐鑫瑶, 陈燕, 张鹏程, 等. 基于多尺度引导滤波的宫颈细胞核图像分割[J]. 计算机应用, 2025, 45(4): 1333-1339. LINGHU X Y, CHEN Y, ZHANG P C, et al. Cervical cell nucleus image segmentation based on multi-scale guided filtering[J]. Journal of Computer Applications, 2025, 45(4): 1333-1339. [48] LI G, SUN C J, XU C Y, et al. Cervical cell segmentation method based on global dependency and local attention[J]. Applied Sciences, 2022, 12(15): 7742. [49] XIE L P, QI J, PAN L L, et al. Integrating deep convolutional neural networks with marker-controlled watershed for overlapping nuclei segmentation in histopathology images[J]. Neurocomputing, 2020, 376: 166-179. [50] STRINGER C, WANG T, MICHAELOS M, et al. Cellpose: a generalist algorithm for cellular segmentation[J]. Nature Methods, 2020, 18(1): 100-106. [51] YANG G H, HUANG J J, HE Y J, et al. GCP-net: a gating context-aware pooling network for cervical cell nuclei segmentation[J]. Mobile Information Systems, 2022(1): 7511905. [52] RASHEED A, SHIRAZI S H, UMAR A I, et al. Cervical cell’s nucleus segmentation through an improved UNet architecture[J]. PLoS One, 2023, 18(10): e0283568. [53] XIANG Y, SUN W X, PAN C L, et al. A novel automation-assisted cervical cancer reading method based on convolutional neural network[J]. Biocybernetics and Biomedical Engineering, 2020, 40(2): 611-623. [54] ZHANG E G, XIE R X, BIAN Y X, et al. Cervical cell nuclei segmentation based on GC-UNet[J]. Heliyon, 2023, 9(7): e17647. [55] HUSSAIN E, MAHANTA L B, DAS C R, et al. A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images[J]. Artificial Intelligence in Medicine, 2020, 107: 101897. [56] GROSSER S, LIPPOLDT J, OSWALD L, et al. Cell and nucleus shape as an indicator of tissue fluidity in carcinoma[J]. Physical Review X, 2021, 11(1): 011033. [57] ZHANG H, ZHU H Q, LING X F. Polar coordinate sampling-based segmentation of overlapping cervical cells using attention U-Net and random walk[J]. Neurocomputing, 2020, 383: 212-223. [58] GRADY L. Random walks for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1768-1783. [59] 朱琳琳, 韩璐, 杜泓, 等. 基于U-Net网络的多主动轮廓细胞分割方法研究[J]. 红外与激光工程, 2020, 49(S1): 20200121. ZHU L L, HAN L, DU H, et al. Multi-active contour cell segmentation method based on U-Net network[J]. Infrared and Laser Engineering, 2020, 49(S1): 20200121. [60] O’MAHONY N, CAMPBELL S, CARVALHO A, et al. Deep learning vs. traditional computer vision[C]//Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference. Cham: Springer, 2019: 128-144. [61] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. [62] BHARATI P, PRAMANIK A. Deep learning techniques: R-CNN to Mask R-CNN: a survey[C]//Computational Intelligence in Pattern Recognition: Proceedings of CIPR 2019. Singapore: Springer, 2020: 657-668. [63] ZHANG Y Q, CHU J, LENG L, et al. Mask-refined R-CNN: a network for refining object details in instance segmentation[J]. Sensors, 2020, 20(4): 1010. [64] CHEN J J, ZHANG B C. Segmentation of overlapping cervical cells with mask region convolutional neural network[J]. Computational and Mathematical Methods in Medicine, 2021(1): 3890988. [65] ZHANG B C, WANG W F, ZHAO W, et al. An improved approach for automated cervical cell segmentation with PointRend[J]. Scientific Reports, 2024, 14: 14210. [66] LIU Y M, ZHANG P C, SONG Q C, et al. Automatic segmentation of cervical nuclei based on deep learning and a conditional random field[J]. IEEE Access, 2018, 6: 53709-53721. [67] 郑杨, 梁光明, 刘任任. 基于Mask R-CNN的宫颈细胞图像分割[J]. 计算机时代, 2020(10): 68-72. ZHENG Y, LIANG G M, LIU R R. Cervical cell image segmentation based on Mask R-CNN[J]. Computer Era, 2020(10): 68-72. [68] 李静, 张悦, 乔亚鑫, 等. 基于改进Mask R-CNN模型的宫颈细胞分割[J]. 长春理工大学学报(自然科学版), 2024, 47(2): 107-113. LI J, ZHANG Y, QIAO Y X, et al. Cervical cell segmentation based on improved Mask R-CNN model[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2024, 47(2): 107-113. [69] KURNIANINGSIH, ALLEHAIBI K H S, NUGROHO L E, et al. Segmentation and classification of cervical cells using deep learning[J]. IEEE Access, 2019, 7: 116925-116941. [70] DE LIMA C R, KHAN S G, SHAH S H, et al. Mask region-based CNNs for cervical cancer progression diagnosis on pap smear examinations[J]. Heliyon, 2023, 9(11): e21388. [71] FUJITA S, HAN X H. Cell detection and segmentation in microscopy images with improved mask R-CNN[C]//Proceedings of the 15th Asian Conference on Computer Vision. Cham: Springer, 2021: 58-70. [72] LOH D R, YONG W X, YAPETER J, et al. A deep learning approach to the screening of malaria infection: automated and rapid cell counting, object detection and instance segmentation using Mask R-CNN[J]. Computerized Medical Imaging and Graphics, 2021, 88: 101845. [73] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, 2014: 2672-2680. [74] AGGARWAL A, MITTAL M, BATTINENI G. Generative adversarial network: an overview of theory and applications[J]. International Journal of Information Management Data Insights, 2021, 1(1): 100004. [75] GUI J, SUN Z N, WEN Y G, et al. A review on generative adversarial networks: algorithms, theory, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3313-3332. [76] HE Z H, JIA D Y, ZHANG C W, et al. A two-stage approach solo_GAN for overlapping cervical cell segmentation based on single-cell identification and boundary generation[J]. Applied Intelligence, 2024, 54(6): 4621-4645. [77] HUANG J J, YANG G H, LI B, et al. Segmentation of cervical cell images based on generative adversarial networks[J]. IEEE Access, 2021, 9: 115415-115428. [78] BRIA A, MARROCCO C, TORTORELLA F. Addressing class imbalance in deep learning for small lesion detection on medical images[J]. Computers in Biology and Medicine, 2020, 120: 103735. [79] QASIM A B, EZHOV I, SHIT S, et al. Red-GAN: attacking class imbalance via conditioned generation. Yet another perspective on medical image synthesis for skin lesion dermoscopy and brain tumor MRI[C]//Proceedings of the 2020 International Conference on Medical Imaging with Deep Learning, 2020: 655-668. [80] REZAEI M, YANG H, MEINEL C. Conditional generative refinement adversarial networks for unbalanced medical image semantic segmentation[EB/OL]. [2024-05-26]. https://arXiv.org/abs/1810.03871. [81] TELLEZ D, LITJENS G, BáNDI P, et al. Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology[J]. Medical Image Analysis, 2019, 58: 101544. [82] ROY S, KUMAR JAIN A, LAL S, et al. A study about color normalization methods for histopathology images[J]. Micron, 2018, 114: 42-61. [83] CHEN X H, YU J Y, CHENG S H, et al. An unsupervised style normalization method for cytopathology images[J]. Computational and Structural Biotechnology Journal, 2021, 19: 3852-3863. [84] KANG H T, LUO D, FENG W H, et al. StainNet: a fast and robust stain normalization network[J]. Frontiers in Medicine, 2021, 8: 746307. [85] YANG S R, XIAO W K, ZHANG M C, et al. Image data augmentation for deep learning: a survey[EB/OL]. [2024-05-26]. https://arXiv.org/abs/2204.08610. [86] MAHARANA K, MONDAL S, NEMADE B. A review: data pre-processing and data augmentation techniques[J]. Global Transitions Proceedings, 2022, 3(1): 91-99. [87] CHEN S Y, GAO D R, WANG L T, et al. Cervical cancer single cell image data augmentation using residual condition generative adversarial networks[C]//Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Big Data. Piscataway: IEEE, 2020: 237-241. [88] PANDEY S, SINGH P R, TIAN J. An image augmentation approach using two-stage generative adversarial network for nuclei image segmentation[J]. Biomedical Signal Processing and Control, 2020, 57: 101782. [89] POURSAEED O, JIANG T X, YANG H, et al. Robustness and generalization via generative adversarial training[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15691-15700. [90] 汪美琴, 袁伟伟, 张继业. 生成对抗网络GAN的研究综述[J]. 计算机工程与设计, 2021, 42(12): 3389-3395. WANG M Q, YUAN W W, ZHANG J Y. Overview of research on generative adversarial network GAN[J]. Computer Engineering and Design, 2021, 42(12): 3389-3395. [91] XIAO H G, LI L, LIU Q Y, et al. Transformers in medical image segmentation: a review[J]. Biomedical Signal Processing and Control, 2023, 84: 104791. [92] CHENG B W, MISRA I, SCHWING A G, et al. Masked-attention mask transformer for universal image segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1280-1289. [93] 方红, 李德生, 蒋广杰. 高效跨域的Transformer小样本语义分割网络[J]. 计算机工程与应用, 2024, 60(4): 142-152. FANG H, LI D S, JIANG G J. Efficient cross-domain transformer few-shot semantic segmentation network[J]. Computer Engineering and Applications, 2024, 60(4): 142-152. [94] HU H X, ZHANG J Y, YANG T J, et al. PATrans: pixel-adaptive Transformer for edge segmentation of cervical nuclei on small-scale datasets[J]. Computers in Biology and Medicine, 2024, 168: 107823. [95] 张灿, 陈玮, 尹钟. 基于弱监督宫颈细胞图像的语义分割方法[J]. 电子科技, 2021, 34(12): 68-74. ZHANG C, CHEN W, YIN Z. Semantic segmentation of cervical cell image based on weak supervision[J]. Electronic Science and Technology, 2021, 34(12): 68-74. [96] HUANG Y M, ZHU H Q. Segmentation of overlapped cervical cells using asymmetric mixture model and shape constraint level set method[J]. Mathematical Problems in Engineering, 2020(1): 3728572. [97] YANG X N, DING B, QIN J, et al. HVS-Unsup: unsupervised cervical cell instance segmentation method based on human visual simulation[J]. Computers in Biology and Medicine, 2024, 171: 108147. [98] 马冬梅, 李悦媛, 陈曦. 融合双重极化注意力的轻量化半监督语义分割[J]. 计算机工程与应用, 2024, 60(8): 225-233. MA D M, LI Y Y, CHEN X. Lightweight semi-supervised semantic segmentation algorithm based on dual-polarization self-attention[J]. Computer Engineering and Applications, 2024, 60(8): 225-233. [99] PARK W, HUH J K, LEE J H. Automated deep learning for classification of dental implant radiographs using a large multi-center dataset[J]. Scientific Reports, 2023, 13: 4862. [100] CAI Q, MA M X, WANG C, et al. Image neural style transfer: a review[J]. Computers and Electrical Engineering, 2023, 108: 108723. [101] 沈秭扬, 倪欢, 管海燕. 遥感图像跨域语义分割的无监督域自适应对齐方法[J]. 测绘学报, 2023, 52(12): 2115-2126. SHEN Z Y, NI H, GUAN H Y. Unsupervised domain adaptation alignment method for cross-domain semantic segmentation of remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(12): 2115-2126. |
| [1] | XU Guangyuan, ZHANG Yaqiang, SHI Hongzhi. Review of Fault-Tolerant Technologies for Large-Scale DNN Training Scenarios [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1771-1788. |
| [2] | CHEN Xu, ZHANG Qi, WANG Shuyang, JING Yongjun. Adaptive Product Space Discrete Dynamic Graph Link Prediction Model [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1820-1831. |
| [3] | ZHOU Kaijun, LIAO Ting, TAN Ping, SHI Changfa. Review of Research on Image Compression Techniques [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1699-1728. |
| [4] | XU Delong, LIN Min, WANG Yurong, ZHANG Shujun. Survey of NLP Data Augmentation Methods Based on Large Language Models [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1395-1413. |
| [5] | LI Yunfei, WEI Xia, CAI Xin, LYU Mingyu, LUO Xianghan. TCTP-YOLO: Typical Obstacles and Traffic Sign Detection Methods for Blind Pedestrians [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1540-1552. |
| [6] | ZHOU Nan, DONG Yongquan, YAN Linke, JIN Jiayong, HE Bugui. Research on Exercise Recommendation Fusing Student Knowledge State and Chaotic Firefly Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1620-1631. |
| [7] | LIANG Jiexin, FENG Yue, LI Jianzhong, CHEN Tao, LIN Zhuosheng, HE Ying, WANG Songbai. Survey on Intelligent Identification of Constitution in Traditional Chinese Medicine [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1455-1475. |
| [8] | LYU Fu, ZHENG Yu, QI Guangyao, LI Haoran. Lightweight SAR Image Ship Oblique Frame Detection Algorithm Based on Polar Coordinate Encoding and Decoding [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1564-1579. |
| [9] | LI Guowei, LIU Jing, CAO Hui, JIANG Liang. Research Review of Deep Learning in Colon Polyp Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1198-1216. |
| [10] | LI Shaobo, WANG Xiaoqiang, GUO Libiao, HONG Ying, WANG Zhiguo. Review of Deep Learning Applications in Unmanned Aerial Vehicle Remote Sensing Images of Grass Plants [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1157-1176. |
| [11] | YANG Zhiyong, GUO Jieru, GUO Zihang, ZHANG Ruixiang, ZHOU Yu. Review of Research on Trajectory Prediction of Road Pedestrian Behavior [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1177-1197. |
| [12] | WANG Ning, ZHI Min. Review of One-Stage Universal Object Detection Algorithms in Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1115-1140. |
| [13] | YANG Sinian, CAO Lijia, YANG Yang, GUO Chuandong. Review of PCB Defect Detection Algorithm Based on Machine Vision [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 901-915. |
| [14] | LI Hanzhang, YAN Xuanhui, LI Zhenli, YAN Yuwei, WANG Tingyin. Dual Graph Attention Model for Multivariate Time Series Anomaly Detection [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1048-1064. |
| [15] | MENG Xiangfu, SHI Guangqi, ZHANG Xiaoyan, LENG Qiangkui, FANG Jinfeng. Survey on Deep Learning Based Trajectory Similarity Measurement Approaches [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 623-644. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/