Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (12): 2695-2717.DOI: 10.3778/j.issn.1673-9418.2206026
• Surveys and Frontiers • Previous Articles Next Articles
ZHOU Yan, PU Lei(), LIN Liangxi, LIU Xiangyu, ZENG Fanzhi, ZHOU Yuexia
Received:
2022-06-06
Revised:
2022-08-31
Online:
2022-12-01
Published:
2022-12-16
About author:
ZHOU Yan, born in 1979, M.S., professor, M.S. supervisor, member of CCF. Her research inte-rests include image processing, computer vision and machine learning.Supported by:
通讯作者:
+E-mail: 2112151112@stu.fosu.edu.cn作者简介:
周燕(1979—),女,江西抚州人,硕士,教授,硕士生导师,CCF会员,主要研究方向为图像处理、计算机视觉、机器学习。基金资助:
CLC Number:
ZHOU Yan, PU Lei, LIN Liangxi, LIU Xiangyu, ZENG Fanzhi, ZHOU Yuexia. Research Progress on 3D Object Detection of LiDAR Point Cloud[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2695-2717.
周燕, 蒲磊, 林良熙, 刘翔宇, 曾凡智, 周月霞. 激光点云的三维目标检测研究进展[J]. 计算机科学与探索, 2022, 16(12): 2695-2717.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2206026
模型 | 年份 | 特点 | 局限性 | 适用场景 |
---|---|---|---|---|
PointRCNN[ | 2019 | 直接对点云进行特征提取操作 | 点云前景点分割耗时 | 室外 |
STD[ | 2019 | 对区域内的点云有序化 | 不进行上采样,损失性能 | 室外 |
3DSSD[ | 2020 | 使用融合采样的策略 | 对小尺度目标检测差 | 室外 |
Point-GNN[ | 2020 | 对点云构建图,有利于学习点云结构特征 | 点云图构建耗时 | 室外 |
3D IoU-Net[ | 2020 | 通过对齐预测框与基准框提升识别准确率 | 对齐操作使网络复杂 | 室外 |
SE-RCNN[ | 2020 | 不需要非极大值抑制操作 | 检测结果受点云密度的影响 | 室外 |
PC-RGNN[ | 2021 | 对稀疏点云区域进行补全操作 | 网络复杂且实时性差 | 室外 |
LiDAR R-CNN[ | 2021 | 感知边界偏移,解决目标的尺寸歧义 | 模块复杂,检测效率降低 | 室外 |
SE-SSD[ | 2021 | 设置教师网络监督学生网络进行学习 | 需要大规模数据集进行训练 | 室外 |
SASA[ | 2022 | 基于语义引导的采样模块 | 采样易受噪声点云的影响 | 室外 |
IA-SSD[ | 2022 | 基于学习与实例感知的下采样策略 | 对大场景下远处物体识别较差 | 室外 |
Table 1 Analysis and summary of methods based on point cloud
模型 | 年份 | 特点 | 局限性 | 适用场景 |
---|---|---|---|---|
PointRCNN[ | 2019 | 直接对点云进行特征提取操作 | 点云前景点分割耗时 | 室外 |
STD[ | 2019 | 对区域内的点云有序化 | 不进行上采样,损失性能 | 室外 |
3DSSD[ | 2020 | 使用融合采样的策略 | 对小尺度目标检测差 | 室外 |
Point-GNN[ | 2020 | 对点云构建图,有利于学习点云结构特征 | 点云图构建耗时 | 室外 |
3D IoU-Net[ | 2020 | 通过对齐预测框与基准框提升识别准确率 | 对齐操作使网络复杂 | 室外 |
SE-RCNN[ | 2020 | 不需要非极大值抑制操作 | 检测结果受点云密度的影响 | 室外 |
PC-RGNN[ | 2021 | 对稀疏点云区域进行补全操作 | 网络复杂且实时性差 | 室外 |
LiDAR R-CNN[ | 2021 | 感知边界偏移,解决目标的尺寸歧义 | 模块复杂,检测效率降低 | 室外 |
SE-SSD[ | 2021 | 设置教师网络监督学生网络进行学习 | 需要大规模数据集进行训练 | 室外 |
SASA[ | 2022 | 基于语义引导的采样模块 | 采样易受噪声点云的影响 | 室外 |
IA-SSD[ | 2022 | 基于学习与实例感知的下采样策略 | 对大场景下远处物体识别较差 | 室外 |
模型 | 年份 | 特点 | 局限性 | 适用场景 |
---|---|---|---|---|
WS3D[ | 2020 | 使用弱标注的鸟瞰图与少量精确三维标注实现弱监督 | 还需要少量的精确三维标注 | 室外 |
VS3D[ | 2020 | 不需要使用三维标注信息 | 性能与全监督方法差距较大 | 室外 |
FGR[ | 2021 | 利用顶点和边与截锥体相交的条件来生成伪三维标签 | 依赖二维目标检测器 | 室外 |
BR[ | 2022 | 利用虚拟标签辅助训练网络 | 仅在室内场景适用 | 室内 |
Table 2 Analysis and summary of weakly supervised methods based on point cloud
模型 | 年份 | 特点 | 局限性 | 适用场景 |
---|---|---|---|---|
WS3D[ | 2020 | 使用弱标注的鸟瞰图与少量精确三维标注实现弱监督 | 还需要少量的精确三维标注 | 室外 |
VS3D[ | 2020 | 不需要使用三维标注信息 | 性能与全监督方法差距较大 | 室外 |
FGR[ | 2021 | 利用顶点和边与截锥体相交的条件来生成伪三维标签 | 依赖二维目标检测器 | 室外 |
BR[ | 2022 | 利用虚拟标签辅助训练网络 | 仅在室内场景适用 | 室内 |
模型 | 年份 | 特点 | 局限性 | 使用场景 |
---|---|---|---|---|
VeloFCN[ | 2017 | 率先使用前视图完成三维目标检测任务 | 无法通过单张视图特征挖掘空间信息 | 室外 |
RT3D[ | 2018 | 对所有RoI只进行一次卷积操作 | 模型泛化能力不强 | 室外 |
PIXOR[ | 2018 | 利用残差网络对鸟瞰图进行特征提取 | 对物体的尺寸感知不强 | 室外 |
LaserNet[ | 2019 | 率先使用范围图完成三维目标检测任务 | 未充分挖掘范围图蕴藏的空间信息 | 室外 |
RangeRCNN[ | 2020 | 将特征从范围图转移到鸟瞰图 | 特征转移时会存在信息丢失 | 室外 |
PPC[ | 2021 | 多种方式编码范围图特征 | 网络复杂,实时性较差 | 室外 |
RangeDet[ | 2021 | 使用新的卷积方式处理范围图 | 多检测头网络不易训练 | 室外 |
RSN[ | 2021 | 在范围图上分割出前景区域 | 易受尺度变化的影响 | 室外 |
FCOS-LiDAR[ | 2022 | 使用多回合范围图投影机制融合多帧点云 | 对输入的数据有较高的要求 | 室外 |
Table 3 Analysis and summary of methods based on point cloud projection
模型 | 年份 | 特点 | 局限性 | 使用场景 |
---|---|---|---|---|
VeloFCN[ | 2017 | 率先使用前视图完成三维目标检测任务 | 无法通过单张视图特征挖掘空间信息 | 室外 |
RT3D[ | 2018 | 对所有RoI只进行一次卷积操作 | 模型泛化能力不强 | 室外 |
PIXOR[ | 2018 | 利用残差网络对鸟瞰图进行特征提取 | 对物体的尺寸感知不强 | 室外 |
LaserNet[ | 2019 | 率先使用范围图完成三维目标检测任务 | 未充分挖掘范围图蕴藏的空间信息 | 室外 |
RangeRCNN[ | 2020 | 将特征从范围图转移到鸟瞰图 | 特征转移时会存在信息丢失 | 室外 |
PPC[ | 2021 | 多种方式编码范围图特征 | 网络复杂,实时性较差 | 室外 |
RangeDet[ | 2021 | 使用新的卷积方式处理范围图 | 多检测头网络不易训练 | 室外 |
RSN[ | 2021 | 在范围图上分割出前景区域 | 易受尺度变化的影响 | 室外 |
FCOS-LiDAR[ | 2022 | 使用多回合范围图投影机制融合多帧点云 | 对输入的数据有较高的要求 | 室外 |
模型 | 年份 | 特点 | 局限性 | 使用场景 |
---|---|---|---|---|
Vote3Deep[ | 2017 | 以投票的方式进行稀疏卷积操作 | 投票过程非端到端 | 室外 |
VoxelNet[ | 2018 | 使用体素特征编码网络学习体素特征 | 模型较大,实时性差 | 室外 |
SECOND[ | 2018 | 改进的稀疏卷积模块 | 稀疏卷积操作计算量大 | 室外 |
PointPillars[ | 2019 | 采用体柱的方式编码点云 | 对小尺度目标识别较差 | 室外 |
SA-SSD[ | 2020 | 通过辅助网络挖掘点与点之间的几何关系 | 辅助网络训练困难 | 室外 |
SSN[ | 2020 | 使用形状标注网络学习结构特征 | 模型复杂,计算量大 | 室外 |
HVNet[ | 2020 | 对不同分辨率的体素进行特征融合 | 多种分辨率体素需占用较大内存 | 室外 |
Part-A2[ | 2020 | RoI生成阶段对边界框进行局部感知 | 实例分割操作计算开销大 | 室外 |
TANet[ | 2020 | 通过Triple Attention模块获取体素的显著特征 | 更关注小尺度的目标 | 室外 |
Voxel-FPN[ | 2020 | 对多个尺度体素进行编码 | 计算消耗大 | 室外 |
HotSpotNet[ | 2020 | 在体素中分配热点区域并预测边界框 | 存在空体素的影响 | 室外 |
AFDet[ | 2020 | 无锚框、无非极大值抑制操作的单阶段框架 | 对目标尺寸感知不强 | 室外 |
CenterPoint[ | 2021 | 在鸟瞰伪图像中预测热点,通过热点检测目标 | 热点分配受点云密度影响 | 室外 |
CADNet[ | 2021 | 使用动态卷积适应不同区域点云密度的变化 | 对大场景不适用 | 室外 |
CIA-SSD[ | 2021 | 提出置信IoU感知模块对齐定位和分类任务 | 丢失了部分体素内点信息 | 室外 |
PDV[ | 2022 | 密度感知的RoI网格池化模块聚集空间局部特征 | 核密度估计导致计算开销大 | 室外 |
SST[ | 2022 | 基于单步长的稀疏Transformer框架 | 网络模型内存占用大 | 室外 |
Table 4 Analysis and summary of methods based on point cloud voxelization
模型 | 年份 | 特点 | 局限性 | 使用场景 |
---|---|---|---|---|
Vote3Deep[ | 2017 | 以投票的方式进行稀疏卷积操作 | 投票过程非端到端 | 室外 |
VoxelNet[ | 2018 | 使用体素特征编码网络学习体素特征 | 模型较大,实时性差 | 室外 |
SECOND[ | 2018 | 改进的稀疏卷积模块 | 稀疏卷积操作计算量大 | 室外 |
PointPillars[ | 2019 | 采用体柱的方式编码点云 | 对小尺度目标识别较差 | 室外 |
SA-SSD[ | 2020 | 通过辅助网络挖掘点与点之间的几何关系 | 辅助网络训练困难 | 室外 |
SSN[ | 2020 | 使用形状标注网络学习结构特征 | 模型复杂,计算量大 | 室外 |
HVNet[ | 2020 | 对不同分辨率的体素进行特征融合 | 多种分辨率体素需占用较大内存 | 室外 |
Part-A2[ | 2020 | RoI生成阶段对边界框进行局部感知 | 实例分割操作计算开销大 | 室外 |
TANet[ | 2020 | 通过Triple Attention模块获取体素的显著特征 | 更关注小尺度的目标 | 室外 |
Voxel-FPN[ | 2020 | 对多个尺度体素进行编码 | 计算消耗大 | 室外 |
HotSpotNet[ | 2020 | 在体素中分配热点区域并预测边界框 | 存在空体素的影响 | 室外 |
AFDet[ | 2020 | 无锚框、无非极大值抑制操作的单阶段框架 | 对目标尺寸感知不强 | 室外 |
CenterPoint[ | 2021 | 在鸟瞰伪图像中预测热点,通过热点检测目标 | 热点分配受点云密度影响 | 室外 |
CADNet[ | 2021 | 使用动态卷积适应不同区域点云密度的变化 | 对大场景不适用 | 室外 |
CIA-SSD[ | 2021 | 提出置信IoU感知模块对齐定位和分类任务 | 丢失了部分体素内点信息 | 室外 |
PDV[ | 2022 | 密度感知的RoI网格池化模块聚集空间局部特征 | 核密度估计导致计算开销大 | 室外 |
SST[ | 2022 | 基于单步长的稀疏Transformer框架 | 网络模型内存占用大 | 室外 |
融合类型 | 模型 | 年份 | 特点 | 局限性 | 使用场景 |
---|---|---|---|---|---|
点云与视图 | MV3D[ | 2017 | 鸟瞰图、前视图与RGB图像融合 | 未充分挖掘各视图之间的关系 | 室外 |
AVOD[ | 2018 | 通过裁剪调整融合RGB图像与鸟瞰图 | 融合处理较为简单 | 室外 | |
PointFusion[ | 2018 | 采用早融合的策略 | 非端到端的网络 | 室外、室内 | |
F-PointNet[ | 2018 | RGB图像候选框投影为视锥体 | 实例分割模块计算消耗大 | 室外、室内 | |
文献[ | 2018 | 使用连续卷积融合图像与点云特征 | 视图转换过程中存在稀疏情况 | 室外 | |
F-ConvNet[ | 2019 | 对视锥体分序列进行特征提取 | 受点云稀疏程度的影响 | 室外、室内 | |
SCANet[ | 2019 | 使用逐元素平均的融合方式 | 模型计算量大 | 室外 | |
MMF[ | 2019 | 对RGB图像深度补全后生成伪点云 | 检测精度依赖于深度补全 | 室外 | |
PI-RCNN[ | 2020 | 通过注意力连续卷积融合图像与点云 | 图像实例分割任务耗时 | 室外 | |
EPNet[ | 2020 | 分级融合点云与图像 | 点云与图像校准要求高 | 室外、室内 | |
PointPainting[ | 2020 | 将图像分割分数附加在点云上 | 分割分数难以代表图像特征 | 室外 | |
PointAugmenting[ | 2021 | 将卷积网络的高维特征附加在点云上 | 数据增强方法通用性不高 | 室外 | |
CAT-Det[ | 2022 | 利用Transformer挖掘点云与图像的关系 | 网络模型内存占用大 | 室外 | |
CVFNet[ | 2022 | 融合点云与范围图并转换至鸟瞰图形式 | 转换会导致特征丢失 | 室外 | |
点云与体素 | PV-RCNN[ | 2019 | 点云与体素融合开拓者 | 点云采样操作耗时 | 室外 |
HVPR[ | 2021 | 在训练时引入内存模块增强点云特征 | 训练阶段较为复杂 | 室外 | |
PVGNet[ | 2021 | 将点、体素与网格特征进行融合 | 三种层次特征融合方式简单 | 室外 | |
BADet[ | 2022 | 对候选框构建图并学习图的结点特征 | 构图过程计算消耗大 | 室外 | |
体素与视图 | MVF[ | 2020 | 采用动态体素化的方法减少内存消耗 | 网络性能受点云变化影响 | 室外 |
文献[ | 2020 | 使用柱面投影的方式生成视图 | 对稀疏区域投影插值存在偏差 | 室外 | |
文献[ | 2022 | 对范围图进行全景分割,增强体素特征 | 检测性能受全景分割影响 | 室外 |
Table 5 Analysis and summary of methods based on multi-modal fusion
融合类型 | 模型 | 年份 | 特点 | 局限性 | 使用场景 |
---|---|---|---|---|---|
点云与视图 | MV3D[ | 2017 | 鸟瞰图、前视图与RGB图像融合 | 未充分挖掘各视图之间的关系 | 室外 |
AVOD[ | 2018 | 通过裁剪调整融合RGB图像与鸟瞰图 | 融合处理较为简单 | 室外 | |
PointFusion[ | 2018 | 采用早融合的策略 | 非端到端的网络 | 室外、室内 | |
F-PointNet[ | 2018 | RGB图像候选框投影为视锥体 | 实例分割模块计算消耗大 | 室外、室内 | |
文献[ | 2018 | 使用连续卷积融合图像与点云特征 | 视图转换过程中存在稀疏情况 | 室外 | |
F-ConvNet[ | 2019 | 对视锥体分序列进行特征提取 | 受点云稀疏程度的影响 | 室外、室内 | |
SCANet[ | 2019 | 使用逐元素平均的融合方式 | 模型计算量大 | 室外 | |
MMF[ | 2019 | 对RGB图像深度补全后生成伪点云 | 检测精度依赖于深度补全 | 室外 | |
PI-RCNN[ | 2020 | 通过注意力连续卷积融合图像与点云 | 图像实例分割任务耗时 | 室外 | |
EPNet[ | 2020 | 分级融合点云与图像 | 点云与图像校准要求高 | 室外、室内 | |
PointPainting[ | 2020 | 将图像分割分数附加在点云上 | 分割分数难以代表图像特征 | 室外 | |
PointAugmenting[ | 2021 | 将卷积网络的高维特征附加在点云上 | 数据增强方法通用性不高 | 室外 | |
CAT-Det[ | 2022 | 利用Transformer挖掘点云与图像的关系 | 网络模型内存占用大 | 室外 | |
CVFNet[ | 2022 | 融合点云与范围图并转换至鸟瞰图形式 | 转换会导致特征丢失 | 室外 | |
点云与体素 | PV-RCNN[ | 2019 | 点云与体素融合开拓者 | 点云采样操作耗时 | 室外 |
HVPR[ | 2021 | 在训练时引入内存模块增强点云特征 | 训练阶段较为复杂 | 室外 | |
PVGNet[ | 2021 | 将点、体素与网格特征进行融合 | 三种层次特征融合方式简单 | 室外 | |
BADet[ | 2022 | 对候选框构建图并学习图的结点特征 | 构图过程计算消耗大 | 室外 | |
体素与视图 | MVF[ | 2020 | 采用动态体素化的方法减少内存消耗 | 网络性能受点云变化影响 | 室外 |
文献[ | 2020 | 使用柱面投影的方式生成视图 | 对稀疏区域投影插值存在偏差 | 室外 | |
文献[ | 2022 | 对范围图进行全景分割,增强体素特征 | 检测性能受全景分割影响 | 室外 |
Method | Year | Type | Car AP/% | Pedestrian AP/% | Cyclist AP/% | Speed/ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Easy | Mod | Hard | Easy | Mod | Hard | Easy | Mod | Hard | ||||
PointRCNN[ | 2019 | 2-stage | 86.96 | 75.64 | 70.70 | 47.98 | 39.37 | 36.01 | 74.96 | 58.82 | 52.53 | 100 |
STD[ | 2019 | 2-stage | 87.95 | 79.71 | 75.09 | 53.29 | 42.47 | 38.35 | 78.69 | 61.59 | 55.30 | 80 |
Point-GNN[ | 2020 | 2-stage | 88.33 | 79.47 | 72.29 | 51.92 | 43.77 | 40.14 | 78.60 | 63.48 | 57.08 | 600 |
3DSSD[ | 2020 | 1-stage | 88.36 | 79.57 | 74.55 | 54.64 | 44.27 | 40.23 | 82.48 | 64.10 | 56.90 | 40 |
3D IoU-Net[ | 2020 | 2-stage | 87.96 | 79.03 | 72.78 | N/A | N/A | N/A | N/A | N/A | N/A | 100 |
SE-RCNN[ | 2020 | 2-stage | 87.74 | 78.96 | 74.30 | N/A | N/A | N/A | N/A | N/A | N/A | 100 |
PC-RGNN[ | 2021 | 2-stage | 89.13 | 79.90 | 75.54 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
SE-SSD[ | 2021 | 1-stage | 91.49 | 82.54 | 77.15 | N/A | N/A | N/A | N/A | N/A | N/A | 30 |
IA-SSD[ | 2022 | 1-stage | 88.87 | 80.32 | 75.10 | 47.90 | 41.03 | 37.98 | 82.36 | 66.25 | 59.70 | 13 |
SASA[ | 2022 | 1-stage | 88.76 | 82.16 | 77.16 | N/A | N/A | N/A | N/A | N/A | N/A | 40 |
Table 6 Performance of methods based on point cloud (KITTI dataset)
Method | Year | Type | Car AP/% | Pedestrian AP/% | Cyclist AP/% | Speed/ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Easy | Mod | Hard | Easy | Mod | Hard | Easy | Mod | Hard | ||||
PointRCNN[ | 2019 | 2-stage | 86.96 | 75.64 | 70.70 | 47.98 | 39.37 | 36.01 | 74.96 | 58.82 | 52.53 | 100 |
STD[ | 2019 | 2-stage | 87.95 | 79.71 | 75.09 | 53.29 | 42.47 | 38.35 | 78.69 | 61.59 | 55.30 | 80 |
Point-GNN[ | 2020 | 2-stage | 88.33 | 79.47 | 72.29 | 51.92 | 43.77 | 40.14 | 78.60 | 63.48 | 57.08 | 600 |
3DSSD[ | 2020 | 1-stage | 88.36 | 79.57 | 74.55 | 54.64 | 44.27 | 40.23 | 82.48 | 64.10 | 56.90 | 40 |
3D IoU-Net[ | 2020 | 2-stage | 87.96 | 79.03 | 72.78 | N/A | N/A | N/A | N/A | N/A | N/A | 100 |
SE-RCNN[ | 2020 | 2-stage | 87.74 | 78.96 | 74.30 | N/A | N/A | N/A | N/A | N/A | N/A | 100 |
PC-RGNN[ | 2021 | 2-stage | 89.13 | 79.90 | 75.54 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
SE-SSD[ | 2021 | 1-stage | 91.49 | 82.54 | 77.15 | N/A | N/A | N/A | N/A | N/A | N/A | 30 |
IA-SSD[ | 2022 | 1-stage | 88.87 | 80.32 | 75.10 | 47.90 | 41.03 | 37.98 | 82.36 | 66.25 | 59.70 | 13 |
SASA[ | 2022 | 1-stage | 88.76 | 82.16 | 77.16 | N/A | N/A | N/A | N/A | N/A | N/A | 40 |
Method | Year | Type | Car AP/% | Pedestrian AP/% | Cyclist AP/% | Speed/ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Easy | Mod | Hard | Easy | Mod | Hard | Easy | Mod | Hard | ||||
VeloFCN[ | 2017 | 1-stage | 69.94 | 62.54 | 55.94 | N/A | N/A | N/A | N/A | N/A | N/A | 5 000 |
RT3D[ | 2018 | 2-stage | 23.74 | 19.14 | 18.86 | N/A | N/A | N/A | N/A | N/A | N/A | 90 |
PIXOR[ | 2018 | 1-stage | 81.70 | 77.05 | 72.95 | N/A | N/A | N/A | N/A | N/A | N/A | 90 |
LaserNet[ | 2019 | 1-stage | 78.25 | 73.77 | 66.47 | N/A | N/A | N/A | N/A | N/A | N/A | 30 |
RangeRCNN[ | 2020 | 2-stage | 88.47 | 81.33 | 77.09 | N/A | N/A | N/A | N/A | N/A | N/A | 60 |
RangeIoUDet[ | 2021 | 2-stage | 88.60 | 79.80 | 76.76 | N/A | N/A | N/A | 83.12 | 67.77 | 60.26 | 20 |
Table 7 Performance of methods based on point cloud projection (KITTI dataset)
Method | Year | Type | Car AP/% | Pedestrian AP/% | Cyclist AP/% | Speed/ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Easy | Mod | Hard | Easy | Mod | Hard | Easy | Mod | Hard | ||||
VeloFCN[ | 2017 | 1-stage | 69.94 | 62.54 | 55.94 | N/A | N/A | N/A | N/A | N/A | N/A | 5 000 |
RT3D[ | 2018 | 2-stage | 23.74 | 19.14 | 18.86 | N/A | N/A | N/A | N/A | N/A | N/A | 90 |
PIXOR[ | 2018 | 1-stage | 81.70 | 77.05 | 72.95 | N/A | N/A | N/A | N/A | N/A | N/A | 90 |
LaserNet[ | 2019 | 1-stage | 78.25 | 73.77 | 66.47 | N/A | N/A | N/A | N/A | N/A | N/A | 30 |
RangeRCNN[ | 2020 | 2-stage | 88.47 | 81.33 | 77.09 | N/A | N/A | N/A | N/A | N/A | N/A | 60 |
RangeIoUDet[ | 2021 | 2-stage | 88.60 | 79.80 | 76.76 | N/A | N/A | N/A | 83.12 | 67.77 | 60.26 | 20 |
Method | Year | Type | LEVEL_1 | LEVEL_2 | Speed/ms | ||||
---|---|---|---|---|---|---|---|---|---|
Car AP/% | Pedestrian AP/% | Cyclist AP/% | Car AP/% | Pedestrian AP/% | Cyclist AP/% | ||||
LaserNet[ | 2019 | 1-stage | 52.10 | 63.40 | N/A | N/A | N/A | N/A | 60 |
RangeRCNN[ | 2020 | 2-stage | 75.43 | N/A | N/A | N/A | N/A | N/A | 50 |
PPC[ | 2021 | 1-stage | 65.20 | 75.50 | N/A | N/A | N/A | N/A | N/A |
RangeDet[ | 2021 | 1-stage | 75.83 | 74.77 | 64.59 | 67.12 | 68.58 | 61.93 | 80 |
RSN[ | 2021 | 1-stage | 81.38 | 82.41 | 54.60 | 72.80 | 74.75 | 49.18 | N/A |
Table 8 Performance of methods based on point cloud projection (Waymo dataset)
Method | Year | Type | LEVEL_1 | LEVEL_2 | Speed/ms | ||||
---|---|---|---|---|---|---|---|---|---|
Car AP/% | Pedestrian AP/% | Cyclist AP/% | Car AP/% | Pedestrian AP/% | Cyclist AP/% | ||||
LaserNet[ | 2019 | 1-stage | 52.10 | 63.40 | N/A | N/A | N/A | N/A | 60 |
RangeRCNN[ | 2020 | 2-stage | 75.43 | N/A | N/A | N/A | N/A | N/A | 50 |
PPC[ | 2021 | 1-stage | 65.20 | 75.50 | N/A | N/A | N/A | N/A | N/A |
RangeDet[ | 2021 | 1-stage | 75.83 | 74.77 | 64.59 | 67.12 | 68.58 | 61.93 | 80 |
RSN[ | 2021 | 1-stage | 81.38 | 82.41 | 54.60 | 72.80 | 74.75 | 49.18 | N/A |
Method | Year | Type | Car AP/% | Pedestrian AP/% | Cyclist AP/% | Speed/ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Easy | Mod | Hard | Easy | Mod | Hard | Easy | Mod | Hard | ||||
Vote3Deep[ | 2017 | 1-stage | 76.79 | 68.24 | 62.23 | 68.39 | 55.37 | 52.59 | 79.92 | 67.88 | 62.98 | 1 100 |
VoxelNet[ | 2018 | 1-stage | 77.49 | 65.11 | 57.73 | 39.48 | 33.69 | 31.51 | 61.22 | 48.36 | 44.37 | 230 |
SECOND[ | 2018 | 1-stage | 83.13 | 73.66 | 66.20 | 51.07 | 42.56 | 37.29 | 70.51 | 53.85 | 46.90 | 40 |
PointPillars[ | 2019 | 1-stage | 82.58 | 74.31 | 68.99 | 51.45 | 41.92 | 38.89 | 77.10 | 58.65 | 51.92 | 16 |
SA-SSD[ | 2020 | 1-stage | 88.75 | 79.79 | 74.16 | N/A | N/A | N/A | N/A | N/A | N/A | 40 |
HVNet[ | 2020 | 1-stage | 87.21 | 77.58 | 71.79 | 69.13 | 64.81 | 59.42 | 87.21 | 73.75 | 68.98 | 30 |
Part-A2[ | 2020 | 2-stage | 87.81 | 78.49 | 73.51 | 53.10 | 43.35 | 40.06 | 79.17 | 63.52 | 56.93 | 80 |
TANet[ | 2020 | 1-stage | 84.39 | 75.94 | 68.82 | 53.72 | 44.34 | 40.49 | 75.70 | 59.44 | 52.53 | 40 |
Voxel-FPN[ | 2020 | 1-stage | 85.64 | 76.70 | 69.44 | N/A | N/A | N/A | N/A | N/A | N/A | 20 |
HotSpotNet[ | 2020 | 1-stage | 87.60 | 78.31 | 73.34 | 53.10 | 45.37 | 41.47 | 82.59 | 65.95 | 59.00 | 40 |
AFDet[ | 2020 | 1-stage | 85.68 | 75.57 | 69.31 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
CenterNet3D[ | 2021 | 1-stage | 86.20 | 77.90 | 73.03 | N/A | N/A | N/A | N/A | N/A | N/A | 40 |
CADNet[ | 2021 | 1-stage | 88.44 | 78.25 | 76.03 | N/A | N/A | N/A | 75.43 | 59.54 | 53.37 | 30 |
CIA-SSD[ | 2021 | 1-stage | 89.59 | 80.28 | 72.87 | N/A | N/A | N/A | N/A | N/A | N/A | 30 |
Voxel R-CNN[ | 2021 | 2-stage | 90.90 | 81.62 | 77.06 | N/A | N/A | N/A | N/A | N/A | N/A | 40 |
PDV[ | 2022 | 2-stage | 90.43 | 81.86 | 77.36 | 47.80 | 40.56 | 38.46 | 83.04 | 67.81 | 60.46 | 100 |
Table 9 Performance of methods based on point cloud voxelization (KITTI dataset)
Method | Year | Type | Car AP/% | Pedestrian AP/% | Cyclist AP/% | Speed/ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Easy | Mod | Hard | Easy | Mod | Hard | Easy | Mod | Hard | ||||
Vote3Deep[ | 2017 | 1-stage | 76.79 | 68.24 | 62.23 | 68.39 | 55.37 | 52.59 | 79.92 | 67.88 | 62.98 | 1 100 |
VoxelNet[ | 2018 | 1-stage | 77.49 | 65.11 | 57.73 | 39.48 | 33.69 | 31.51 | 61.22 | 48.36 | 44.37 | 230 |
SECOND[ | 2018 | 1-stage | 83.13 | 73.66 | 66.20 | 51.07 | 42.56 | 37.29 | 70.51 | 53.85 | 46.90 | 40 |
PointPillars[ | 2019 | 1-stage | 82.58 | 74.31 | 68.99 | 51.45 | 41.92 | 38.89 | 77.10 | 58.65 | 51.92 | 16 |
SA-SSD[ | 2020 | 1-stage | 88.75 | 79.79 | 74.16 | N/A | N/A | N/A | N/A | N/A | N/A | 40 |
HVNet[ | 2020 | 1-stage | 87.21 | 77.58 | 71.79 | 69.13 | 64.81 | 59.42 | 87.21 | 73.75 | 68.98 | 30 |
Part-A2[ | 2020 | 2-stage | 87.81 | 78.49 | 73.51 | 53.10 | 43.35 | 40.06 | 79.17 | 63.52 | 56.93 | 80 |
TANet[ | 2020 | 1-stage | 84.39 | 75.94 | 68.82 | 53.72 | 44.34 | 40.49 | 75.70 | 59.44 | 52.53 | 40 |
Voxel-FPN[ | 2020 | 1-stage | 85.64 | 76.70 | 69.44 | N/A | N/A | N/A | N/A | N/A | N/A | 20 |
HotSpotNet[ | 2020 | 1-stage | 87.60 | 78.31 | 73.34 | 53.10 | 45.37 | 41.47 | 82.59 | 65.95 | 59.00 | 40 |
AFDet[ | 2020 | 1-stage | 85.68 | 75.57 | 69.31 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
CenterNet3D[ | 2021 | 1-stage | 86.20 | 77.90 | 73.03 | N/A | N/A | N/A | N/A | N/A | N/A | 40 |
CADNet[ | 2021 | 1-stage | 88.44 | 78.25 | 76.03 | N/A | N/A | N/A | 75.43 | 59.54 | 53.37 | 30 |
CIA-SSD[ | 2021 | 1-stage | 89.59 | 80.28 | 72.87 | N/A | N/A | N/A | N/A | N/A | N/A | 30 |
Voxel R-CNN[ | 2021 | 2-stage | 90.90 | 81.62 | 77.06 | N/A | N/A | N/A | N/A | N/A | N/A | 40 |
PDV[ | 2022 | 2-stage | 90.43 | 81.86 | 77.36 | 47.80 | 40.56 | 38.46 | 83.04 | 67.81 | 60.46 | 100 |
Method | Year | Type | LEVEL_1 | LEVEL_2 | Speed/ms | ||||
---|---|---|---|---|---|---|---|---|---|
Car AP/% | Pedestrian AP/% | Cyclist AP/% | Car AP/% | Pedestrian AP/% | Cyclist AP/% | ||||
SECOND[ | 2018 | 1-stage | 58.50 | 63.90 | 48.60 | 51.60 | 51.10 | 56.00 | N/A |
PointPillars[ | 2019 | 1-stage | 56.62 | 59.25 | N/A | N/A | N/A | N/A | 40 |
Part-A2[ | 2020 | 2-stage | 77.05 | 75.24 | 68.60 | 68.47 | 66.18 | 66.13 | N/A |
AFDet[ | 2020 | 1-stage | 63.69 | N/A | N/A | N/A | N/A | N/A | N/A |
Voxel R-CNN[ | 2021 | 2-stage | 75.90 | N/A | N/A | 66.59 | N/A | N/A | N/A |
CenterPoint[ | 2021 | 1-stage | 76.70 | 79.00 | N/A | 68.80 | 71.00 | N/A | 80 |
PDV[ | 2022 | 2-stage | 76.85 | 74.19 | 68.71 | 69.30 | 65.85 | 66.49 | 340 |
SST[ | 2022 | 1-stage | 80.99 | 83.30 | 75.69 | 73.08 | 76.93 | 73.22 | 90 |
Table 10 Performance of methods based on point cloud voxelization (Waymo dataset)
Method | Year | Type | LEVEL_1 | LEVEL_2 | Speed/ms | ||||
---|---|---|---|---|---|---|---|---|---|
Car AP/% | Pedestrian AP/% | Cyclist AP/% | Car AP/% | Pedestrian AP/% | Cyclist AP/% | ||||
SECOND[ | 2018 | 1-stage | 58.50 | 63.90 | 48.60 | 51.60 | 51.10 | 56.00 | N/A |
PointPillars[ | 2019 | 1-stage | 56.62 | 59.25 | N/A | N/A | N/A | N/A | 40 |
Part-A2[ | 2020 | 2-stage | 77.05 | 75.24 | 68.60 | 68.47 | 66.18 | 66.13 | N/A |
AFDet[ | 2020 | 1-stage | 63.69 | N/A | N/A | N/A | N/A | N/A | N/A |
Voxel R-CNN[ | 2021 | 2-stage | 75.90 | N/A | N/A | 66.59 | N/A | N/A | N/A |
CenterPoint[ | 2021 | 1-stage | 76.70 | 79.00 | N/A | 68.80 | 71.00 | N/A | 80 |
PDV[ | 2022 | 2-stage | 76.85 | 74.19 | 68.71 | 69.30 | 65.85 | 66.49 | 340 |
SST[ | 2022 | 1-stage | 80.99 | 83.30 | 75.69 | 73.08 | 76.93 | 73.22 | 90 |
Method | Year | Type | Car AP/% | Pedestrian AP/% | Cyclist AP/% | Speed/ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Easy | Mod | Hard | Easy | Mod | Hard | Easy | Mod | Hard | ||||
MV3D[ | 2017 | 2-stage | 74.97 | 63.63 | 54.00 | N/A | N/A | N/A | N/A | N/A | N/A | 360 |
F-PointNet[ | 2018 | 2-stage | 82.19 | 69.79 | 60.59 | 50.53 | 42.15 | 38.08 | 72.27 | 56.12 | 49.01 | 170 |
AVOD[ | 2018 | 2-stage | 76.39 | 66.47 | 60.23 | 36.10 | 27.86 | 25.76 | 57.19 | 42.08 | 38.29 | 80 |
PointFusion[ | 2018 | 2-stage | 77.92 | 63.00 | 53.27 | 33.36 | 28.04 | 23.38 | 49.34 | 29.42 | 26.98 | N/A |
RoarNet[ | 2018 | 2-stage | 84.25 | 74.29 | 59.78 | N/A | N/A | N/A | N/A | N/A | N/A | 100 |
MMF[ | 2019 | 2-stage | 88.40 | 77.43 | 70.22 | N/A | N/A | N/A | N/A | N/A | N/A | 80 |
SCANet[ | 2019 | 2-stage | 76.09 | 66.30 | 58.68 | 50.66 | 41.44 | 36.60 | 67.97 | 53.07 | 50.81 | 90 |
F-ConvNet[ | 2019 | 2-stage | 87.36 | 76.39 | 66.69 | 52.16 | 43.38 | 38.80 | 81.98 | 65.07 | 56.54 | 470 |
Fast Point R-CNN[ | 2019 | 2-stage | 85.29 | 77.40 | 70.24 | N/A | N/A | N/A | N/A | N/A | N/A | 60 |
PV-RCNN[ | 2020 | 2-stage | 90.25 | 81.43 | 76.82 | 52.17 | 43.29 | 40.29 | 78.60 | 63.71 | 57.65 | 80 |
PI-RCNN[ | 2020 | 2-stage | 84.37 | 74.82 | 70.03 | N/A | N/A | N/A | N/A | N/A | N/A | 100 |
EPNet[ | 2020 | 1-stage | 89.81 | 79.28 | 74.59 | N/A | N/A | N/A | N/A | N/A | N/A | 100 |
PVGNet[ | 2021 | 2-stage | 89.94 | 81.81 | 77.09 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
HVPR[ | 2021 | 1-stage | 86.38 | 77.92 | 73.04 | 53.47 | 43.96 | 40.64 | N/A | N/A | N/A | 20 |
CAT-Det[ | 2022 | 2-stage | 89.87 | 81.32 | 76.68 | 54.26 | 45.44 | 41.94 | 83.68 | 68.81 | 61.45 | 300 |
Table 11 Performance of methods based on multi-modal fusion (KITTI dataset)
Method | Year | Type | Car AP/% | Pedestrian AP/% | Cyclist AP/% | Speed/ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Easy | Mod | Hard | Easy | Mod | Hard | Easy | Mod | Hard | ||||
MV3D[ | 2017 | 2-stage | 74.97 | 63.63 | 54.00 | N/A | N/A | N/A | N/A | N/A | N/A | 360 |
F-PointNet[ | 2018 | 2-stage | 82.19 | 69.79 | 60.59 | 50.53 | 42.15 | 38.08 | 72.27 | 56.12 | 49.01 | 170 |
AVOD[ | 2018 | 2-stage | 76.39 | 66.47 | 60.23 | 36.10 | 27.86 | 25.76 | 57.19 | 42.08 | 38.29 | 80 |
PointFusion[ | 2018 | 2-stage | 77.92 | 63.00 | 53.27 | 33.36 | 28.04 | 23.38 | 49.34 | 29.42 | 26.98 | N/A |
RoarNet[ | 2018 | 2-stage | 84.25 | 74.29 | 59.78 | N/A | N/A | N/A | N/A | N/A | N/A | 100 |
MMF[ | 2019 | 2-stage | 88.40 | 77.43 | 70.22 | N/A | N/A | N/A | N/A | N/A | N/A | 80 |
SCANet[ | 2019 | 2-stage | 76.09 | 66.30 | 58.68 | 50.66 | 41.44 | 36.60 | 67.97 | 53.07 | 50.81 | 90 |
F-ConvNet[ | 2019 | 2-stage | 87.36 | 76.39 | 66.69 | 52.16 | 43.38 | 38.80 | 81.98 | 65.07 | 56.54 | 470 |
Fast Point R-CNN[ | 2019 | 2-stage | 85.29 | 77.40 | 70.24 | N/A | N/A | N/A | N/A | N/A | N/A | 60 |
PV-RCNN[ | 2020 | 2-stage | 90.25 | 81.43 | 76.82 | 52.17 | 43.29 | 40.29 | 78.60 | 63.71 | 57.65 | 80 |
PI-RCNN[ | 2020 | 2-stage | 84.37 | 74.82 | 70.03 | N/A | N/A | N/A | N/A | N/A | N/A | 100 |
EPNet[ | 2020 | 1-stage | 89.81 | 79.28 | 74.59 | N/A | N/A | N/A | N/A | N/A | N/A | 100 |
PVGNet[ | 2021 | 2-stage | 89.94 | 81.81 | 77.09 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
HVPR[ | 2021 | 1-stage | 86.38 | 77.92 | 73.04 | 53.47 | 43.96 | 40.64 | N/A | N/A | N/A | 20 |
CAT-Det[ | 2022 | 2-stage | 89.87 | 81.32 | 76.68 | 54.26 | 45.44 | 41.94 | 83.68 | 68.81 | 61.45 | 300 |
[1] | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2016, 39(6): 1137-1149. |
[2] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Procee-dings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Pis-cataway: IEEE, 2016: 779-788. |
[3] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. |
[4] |
王鑫鹏, 王晓强, 林浩, 等. 深度学习典型目标检测算法的改进综述[J]. 计算机工程与应用, 2022, 58(6): 42-57.
DOI |
WANG X P, WANG X Q, LIN H, et al. Review on improve-ment of typical object detection algorithms in deep learning[J]. Computer Engineering and Applications, 2022, 58(6): 42-57. | |
[5] |
邱起璐, 赵杰煜, 陈瑜. 面向三维目标的矢量型卷积网络[J]. 模式识别与人工智能, 2022, 35(3): 271-282.
DOI |
QIU Q L, ZHAO J Y, CHEN Y. A convolutional vector net-work for 3D mesh object Recognition[J]. Pattern Recog-nition and Artificial Intelligence, 2022, 35(3): 271-282. | |
[6] | IOANNIDOU A, CHATZILARI E, NIKOLOPOULOS S, et al. Deep learning advances in computer vision with 3D data: a survey[J]. ACM Computing Surveys, 2017, 50(2): 1-38. |
[7] |
LI Y, MA L, ZHONG Z, et al. Deep learning for LiDAR point clouds in autonomous driving: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(8): 3412-3432.
DOI URL |
[8] | DING M, HUO Y, YI H, et al. Learning depth-guided con-volutions for monocular 3D object detection[C]// Procee-dings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscata-way: IEEE, 2020: 11669-11678. |
[9] | MA X, WANG Z, LI H, et al. Accurate monocular 3D object detection via color-embedded 3D reconstruction for auto-nomous driving[C]// Proceedings of the 2019 International Conference on Pattern Recognition, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6850-6859. |
[10] | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, July 21-26, 2017. Piscata-way: IEEE, 2017: 77-85. |
[11] | SHI S, WANG X, LI H. PointRCNN: 3D object proposal generation and detection from point cloud[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pat-tern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 770-779. |
[12] | YANG Z, SUN Y, LIU S, et al. 3DSSD: point-based 3D sin-gle stage object detector[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11037-11045. |
[13] | LI B. 3D fully convolutional network for vehicle detection in point cloud[C]// Proceeding of the 2017 IEEE Interna-tional Conference on Intelligent Robots and Systems, Van-couver, Sep 24-28, 2017. Piscataway: IEEE, 2017: 1513-1518. |
[14] |
ZENG Y, HU Y, LIU S, et al. RT3D: real-time 3-D vehicle detection in LiDAR point cloud for autonomous driving[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3434-3440.
DOI URL |
[15] | ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 4490-4499. |
[16] |
YAN Y, MAO Y, LI B. SECOND: sparsely embedded con-volutional detection[J]. Sensors, 2018, 18(10): 3337-3353.
DOI URL |
[17] | SINDAGI V A, ZHOU Y, TUZEL O. MVX-Net: multi-modal VoxelNet for 3D object detection[C]// Proceedings of the 2019 International Conference on Robotics and Automa-tion, Montreal, May 20-24, 2019. Piscataway: IEEE, 2019: 7276-7282. |
[18] | CHEN X, MA H, WAN J, et al. Multi-view 3D object detec-tion network for autonomous driving[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 1907-1915. |
[19] |
GUO Y, WANG H, HU Q, et al. Deep learning for 3D point clouds: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12): 4338-4364.
DOI URL |
[20] |
张鹏, 宋一凡, 宗立波, 等. 3D目标检测进展综述[J]. 计算机科学, 2020, 47(4): 94-102.
DOI |
ZHANG P, SONG Y F, ZONG L B, et al. Advances in 3D object detection: a brief survey[J]. Computer Science, 2020, 47(4): 94-102.
DOI |
|
[21] |
肖雨晴, 杨慧敏. 目标检测算法在交通场景中应用综述[J]. 计算机工程与应用, 2021, 57(6): 30-41.
DOI |
XIAO Y Q, YANG H M. Research on application of object detection algorithm in traffic scene[J]. Computer Enginee-ring and Applications, 2021, 57(6): 30-41. | |
[22] | ARNOLD E, AL-JARRAH O Y, DIANATI M, et al. A sur-vey on 3D object detection methods for autonomous dri-ving applications[J]. IEEE Transactions on Intelligent Tran-sportation Systems, 2019, 20(10): 3782-3795. |
[23] | QI C R, LI Y, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// Procee-dings of the Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5105-5114. |
[24] | YANG Z, SUN Y, LIU S, et al. STD: sparse-to-dense 3D object detector for point cloud[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recog-nition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 1951-1960. |
[25] | LI Z, WANG F, WANG N. LiDAR R-CNN: an efficient and universal 3D object detector[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recog-nition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 7542-7551. |
[26] | CHEN C, CHEN Z, ZHANG J, et al. SASA: semantics-augmented set abstraction for point-based 3D object detec-tion[J]. arXiv:2201.01976, 2022. |
[27] | ZHANG Y, HU Q, XU G, et al. Not all points are equal: learning highly efficient point-based detectors for 3D LiDAR point clouds[C]// Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 18953-18962. |
[28] | ZHENG W, TANG W, JIANG L, et al. SE-SSD: self-ensem-bling single-stage object detector from point cloud[C]// Pro-ceedings of the 2021 IEEE Conference on Computer Vi-sion and Pattern Recognition, Nashville, June 20-25, 2021. Piscataway: IEEE, 2021: 14494-14503. |
[29] | TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]// Proceedings of the Annual Conference on Neural Information Processing Sys-tems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Asso-ciates, 2017: 1195-1204. |
[30] | HE C, ZENG H, HUANG J, et al. Structure aware single-stage 3D object detection from point cloud[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11873-11882. |
[31] | LIU Z, ZHAO X, HUANG T, et al. TANet: robust 3D ob-ject detection from point clouds with triple attention[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 11677-11684. |
[32] | SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel fea-ture set abstraction for 3D object detection[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 10529-10538. |
[33] | SHI S, WANG Z, SHI J, et al. From points to parts: 3D ob-ject detection from point cloud with part-aware and part-aggregation network[J]. IEEE Transactions on Pattern Ana-lysis and Machine Intelligence, 2020, 43(8): 2647-2664. |
[34] | SHI W, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1711-1719. |
[35] | ZHANG Y, HUANG D, WANG Y. PC-RGNN: point cloud completion and graph neural network for 3D object detec-tion[J]. arXiv:2012.10412, 2020. |
[36] | ZHU L, XIE Z, LIU L, et al. IoU-uniform R-CNN: brea-king through the limitations of RPN[J]. arXiv:1912.05190, 2019. |
[37] | LI J, LUO S, ZHU Z, et al. 3D IoU-Net: IoU guided 3D object detector for point clouds[J]. arXiv:2004.04962, 2020. |
[38] | GEIGER A, LENZ P, URTASUN R. Are we ready for au-tonomous driving? the KITTI vision benchmark suite[C]// Proceedings of the 2012 IEEE Conference on Computer Vi-sion and Pattern Recognition, Providence, Jun 16-21, 2012. Piscataway: IEEE, 2012: 3354-3361. |
[39] | ZHOU D, FANG J, SONG X, et al. Joint 3D instance seg-mentation and object detection for autonomous driving[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1839-1849. |
[40] | MENG Q, WANG W, ZHOU T, et al. Weakly supervised 3D object detection from LiDAR point cloud[C]// LNCS 12358: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 515-531. |
[41] | QIN Z, WANG J, LU Y. Weakly supervised 3D object detec-tion from point clouds[C]// Proceedings of the 28th ACM International Conference on Multimedia, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 4144-4152. |
[42] | WEI Y, SU S, LU J, et al. FGR: frustum-aware geometric rea-soning for weakly supervised 3D vehicle detection[C]// Pro-ceedings of the 2021 IEEE International Conference on Robotics and Automation, Xi’an, May 30-Jun 5, 2021. Pis-cataway: IEEE, 2021: 4348-4354. |
[43] | XU X, WANG Y, ZHENG Y, et al. Back to reality: weakly-supervised 3D object detection with shape-guided label enhancement[C]// Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 8438-8447. |
[44] | LI B, ZHANG T, XIA T. Vehicle detection from 3D LiDAR using fully convolutional network[J]. arXiv:1608.07916, 2016. |
[45] | YANG B, LUO W, URTASUN R. PIXOR: real-time 3D object detection from point clouds[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 7652-7660. |
[46] | MEYER G P, LADDHA A, KEE E, et al. LaserNet: an efficient probabilistic 3D object detector for autonomous driving[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 12677-12686. |
[47] | LIANG Z, ZHANG M, ZHANG Z, et al. RangeRCNN: to-wards fast and accurate 3D object detection with range image representation[J]. arXiv:2009.00206, 2020. |
[48] | CHAI Y, SUN P, NGIAM J, et al. To the point: efficient 3D object detection in the range image with graph convolution kernels[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 16000-16009. |
[49] | LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]// Pro-ceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Pis-cataway: IEEE, 2019: 12697-12705. |
[50] | FAN L, XIONG X, WANG F, et al. RangeDet: in defense of range view for LiDAR-based 3D object detection[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 2918-2927. |
[51] | SUN P, WANG W, CHAI Y, et al. RSN: range sparse net for efficient, accurate LiDAR 3D object detection[C]// Procee-dings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Pis-cataway: IEEE, 2021: 5725-5734. |
[52] | DUAN K, BAI S, XIE L, et al. CenterNet: keypoint triplets for object detection[C]// Proceedings of the 2019 IEEE Con-ference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 6569-6578. |
[53] | TIAN Z, CHU X, WANG X, et al. Fully convolutional one-stage 3D object detection on LiDAR range images[J]. arXiv:2205.13764, 2022. |
[54] | ENGELCKE M, RAO D, WANG D Z, et al. Vote3Deep: fast object detection in 3D point clouds using efficient convolu-tional neural networks[C]// Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Sin-gapore, May 29-Jun 3, 2017. Piscataway: IEEE, 2017: 1355-1361. |
[55] | WANG D Z, POSNER I. Voting for voting in online point cloud object detection[C]// Proceedings of the Robotics: Science and Systems, Rome, Jul 13-17, 2015. Los Angeles: SAGE Publishing, 2015: 10-15. |
[56] | TIAN Y, HUANG L, LI X, et al. Context-aware dynamic feature extraction for 3D object detection in point clouds[J]. arXiv:1912.04775, 2019. |
[57] | ZHU X, MA Y, WANG T, et al. SSN:shape signature net-works for multi-class object detection from point clouds[C]// LNCS 12370: Proceedings of the 16th European Con-ference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 581-597. |
[58] | CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pat-tern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11621-11631. |
[59] | CHEN Q, SUN L, WANG Z, et al. Object as hotspots: an anchor-free 3D object detection approach via firing of hot-spots[C]// Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Sp-ringer, 2020: 68-84. |
[60] | GE R, DING Z, HU Y, et al. AFDet: anchor free one stage 3D object detection[J]. arXiv:2006.12671, 2020. |
[61] | YIN T, ZHOU X, KRAHENBUHL P. Center-based 3D object detection and tracking[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recog-nition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 11784-11793. |
[62] | SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scala-bility in perception for autonomous driving: Waymo open dataset[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2446-2454. |
[63] | WANG G, TIAN B, AI Y, et al. CenterNet3D: an anchor free object detector for autonomous driving[J]. arXiv:2007.07214, 2020. |
[64] |
KUANG H, WANG B, AN J, et al. Voxel-FPN: multi-scale voxel feature aggregation for 3D object detection from LiDAR point clouds[J]. Sensors, 2020, 20(3): 704-721.
DOI URL |
[65] | HU J S K, KUAI T, WASLANDER S L. Point density-aware voxels for LiDAR 3D object detection[C]// Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 8469-8478. |
[66] | YE M, XU S, CAO T. HVNet: hybrid voxel network for LiDAR based 3D object detection[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Re-cognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1631-1640. |
[67] | ZHENG W, TANG W, CHEN S, et al. CIA-SSD: confident IoU-aware single-stage object detector from point cloud[C]// Proceedings of the 35th AAAI Conference on Artifi-cial Intelligence, the 33rd Conference on Innovative Applica-tions of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 3555-3562. |
[68] | FAN L, PANG Z, ZHANG T, et al. Embracing single stride 3D object detector with sparse transformer[C]// Proceedings of the 2022 IEEE Conference on Computer Vision and Pat-tern Recognition, New Orleans, Jun 19-24, 2022. Piscata-way: IEEE, 2022: 8458-8468. |
[69] | KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal gene-ration and object detection from view aggregation[C]// Pro-ceedings of the 2018 IEEE International Conference on Intelligent Robots and Systems, Madrid, Oct 1-5, 2018. Pis-cataway: IEEE, 2018: 1-8. |
[70] | XU D, ANGUELOV D, JAIN A. PointFusion: deep sensor fusion for 3D bounding box estimation[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 244-253. |
[71] | QI C R, LIU W, WU C, et al. Frustum PointNets for 3D object detection from RGB-D data[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 918-927. |
[72] | WANG Z, JIA K. Frustum ConvNet: sliding frustums to agg-regate local point-wise features for amodal 3D object detec-tion[C]// Proceedings of the 2019 IEEE International Confe-rence on Intelligent Robots and Systems, Macau, China, Nov 3-8, 2019. Piscataway: IEEE, 2019: 1742-1749. |
[73] | LIANG M, YANG B, WANG S, et al. Deep continuous fu-sion for multi-sensor 3D object detection[C]// LNCS 11220: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 663-678. |
[74] | BOSCAINI D, MASCI J, et al. Learning shape correspon-dence with anisotropic convolutional neural networks[C]// Proceedings of the Annual Conference on Neural Informa-tion Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 3189-3197. |
[75] | XIE L, XIANG C, YU Z, et al. PI-RCNN: an efficient multi-sensor 3D object detector with point-based attentive cont-conv fusion module[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial In-telligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12460-12467. |
[76] | HUANG T, LIU Z, CHEN X, et al. EPNet: enhancing point features with image semantics for 3D object detection[C]// LNCS 12360: Proceedings of the 16th European Conferen-ce on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 35-52. |
[77] | VORA S, LANG A H, HELOU B, et al. PointPainting: sequential fusion for 3D object detection[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pat-tern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 4604-4612. |
[78] | WANG C, MA C, ZHU M, et al. PointAugmenting: cross-modal augmentation for 3D object detection[C]// Procee-dings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Pisca-taway: IEEE, 2021: 11794-11803. |
[79] | ZHANG Y, CHEN J, HUANG D. CAT-Det: contrastively augmented transformer for multi-modal 3D object detection[C]// Proceedings of the 2022 IEEE Conference on Com-puter Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 908-917. |
[80] | GU J, XIANG Z, ZHAO P, et al. CVFNet: real-time 3D ob-ject detection by learning cross view features[J]. arXiv:2203.06585, 2022. |
[81] | ZHAO X, LIU Z, HU R, et al. 3D object detection using scale invariant and feature reweighting networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Con-ference, the 9th AAAI Symposium on Educational Advan-ces in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 9267-9274. |
[82] | LU H, CHEN X, ZHANG G, et al. SCANet: spatial-channel attention network for 3D object detection[C]// Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, May 12-17, 2019. Piscataway: IEEE, 2019: 1992-1996. |
[83] | LIANG M, YANG B, CHEN Y, et al. Multi-task multi-sensor fusion for 3D object detection[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recog-nition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 7345-7353. |
[84] | ZHOU Y, SUN P, ZHANG Y, et al. End-to-end multi-view fusion for 3D object detection in LiDAR point clouds[C]// Proceedings of the 2020 Conference on Robot Learning, Nov 16-18, 2020: 923-932. |
[85] | WANG Y, FATHI A, KUNDU A, et al. Pillar-based object detection for autonomous driving[C]// LNCS 12367: Procee-dings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 18-34. |
[86] | FAZLALI H, XU Y, REN Y, et al. A versatile multi-view framework for LiDAR-based 3D object detection with gui-dance from panoptic segmentation[C]// Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Re-cognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 17192-17201. |
[87] | NOH J, LEE S, HAM B. HVPR: hybrid voxel-point repre-sentation for single-stage 3D object detection[C]// Procee-dings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Pisca-taway: IEEE, 2021: 14605-14614. |
[88] | MIAO Z, CHEN J, PAN H, et al. PVGNet: a bottom-up one-stage 3D object detector with integrated multi-level features[C]// Proceedings of the 2021 IEEE Conference on Com-puter Vision and Pattern Recognition, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 3279-3288. |
[89] |
QIAN R, LAI X, LI X. BADet: boundary-aware 3D object detection from point clouds[J]. Pattern Recognition, 2022, 125: 108524.
DOI URL |
[90] | SIMONELLI A, BULO S R, PORZI L, et al. Disentangling monocular 3D object detection[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recogni-tion, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 1991-1999. |
[91] | LIANG Z, ZHANG Z, ZHANG M, et al. RangeIoUDet: range image based real-time 3D object detector optimized by intersection over union[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recogni-tion, Nashville, Jun 20-25, 2021. Piscataway: IEEE, 2021: 7140-7149. |
[92] | YANG B, LIANG M, URTASUN R. HDNet: exploiting HD maps for 3D object detection[C]// Proceedings of the Conference on Robot Learning, Zürich, Oct 29-31, 2018. New York: PMLR, 2018: 146-155. |
[93] | DENG J, SHI S, LI P, et al. Voxel R-CNN: towards high performance voxel-based 3D object detection[C]// Procee-dings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applications of Artifi-cial Intelligence, the 11th Symposium on Educational Ad-vances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 1201-1209. |
[94] | SHIN K, KWON Y P, TOMIZUKA M. RoarNet: a robust 3D object detection based on region approximation refine-ment[C]// Proceedings of the 2019 IEEE Intelligent Vehicles Symposium, Paris, Jun 9-12, 2019. Piscataway: IEEE, 2019: 2510-2515. |
[95] | CHEN Y, LIU S, SHEN X, et al. Fast point R-CNN[C]// Proceedings of the 2019 IEEE Conference on Computer Vi-sion and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 9775-9784. |
[1] | ZHANG Lu, LU Tianliang, DU Yanhui. Overview of Facial Deepfake Video Detection Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 1-26. |
[2] | WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong. Survey on 3D Human Pose Estimation of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. |
[3] | LIANG Jiali, HUA Baojian, LYU Yashuai, SU Zhenyu. Loop Invariant Code Motion Algorithm for Deep Learning Operators [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 127-139. |
[4] | WANG Jianzhe, WU Qin. Salient Object Detection Based on Coordinate Attention Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 154-165. |
[5] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
[6] | LI Dongmei, LUO Sisi, ZHANG Xiaoping, XU Fu. Review on Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968. |
[7] | REN Ning, FU Yan, WU Yanxia, LIANG Pengju, HAN Xi. Review of Research on Imbalance Problem in Deep Learning Applied to Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953. |
[8] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[9] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
[10] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[11] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[12] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[13] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[14] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[15] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/