[1] POPESCU A, FARID H. Exposing digital forgeries by detec-ting duplicated image regions[R]. Dartmouth College,2004.
[2] CHRISTLEIN V, RIESS C, JORDAN J, et al. An evalua-tion of popular copy-move forgery detection approaches[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(6): 1841-1854.
[3] COZZOLINO D, POGGI G, VERDOLIVA L. Efficient dense-field copy-move tampering detection[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(11): 2284-2297.
[4] HUANG H, GUO W, ZHANG Y. Detection of copy-move tampering in digital images using SIFT algorithm[C]//Pro-ceedings of the 2008 IEEE Pacific-Asia Workshop on Com-putational Intelligence and Industrial Application, Wuhan, Dec 19-20, 2008. Piscataway: IEEE, 2009: 272-276.
[5] AMERINI I, BALLAN L, CALDELLI R, et al. A SIFT-based forensic method for copy-move attack detection and trans-formation recovery[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1099-1110.
[6] SILVA E, CARVALHO T, FERREIRA A, et al. Going deeper into copy-move forgery detection: exploring image telltales via multi-scale analysis and voting processes[J]. Journal of Visual Communication and Image Representation, 2015, 29: 16-32.
[7] 肖斌, 景如霞, 毕秀丽, 等. 基于分组SIFT的图像复制粘贴篡改快速检测算法[J]. 通信学报, 2020, 41(3): 62-70.
XIAO B, JING R X, BI X L, et al. Fast copy-move tampe-ring detection algorithm based on group SIFT[J]. Journal on Communications, 2020, 41(3): 62-70.
[8] LOWE D G. Distinctive image features from scale-invariant key-points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[9] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision & Image Understan-ding, 2008, 110(3): 346-359.
[10] LI Y, ZHOU J. Fast and effective image copy-move tampe-ring detection via hierarchical feature point matching[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1307-1322.
[11] RAO Y, NI J. A deep learning approach to detection of splicing and copy-move forgeries in images[C]//Proceedings of the 2016 IEEE International Workshop on Information Forensics and Security, Abu Dhabi, Dec 4-7, 2016. Piscata-way: IEEE, 2016: 1-6.
[12] OUYANG J, LIU Y, LIAO M. Copy-move tampering detec-tion based on deep learning[C]//Proceedings of the 2017 10th International Congress on Image and Signal Proces-sing, Bio-Medical Engineering and Informatics, Shanghai, Oct 14-16, 2017. Piscataway: IEEE, 2017: 1-5.
[13] WU Y, ABD-ALMAGEED W, NATARAJAN P. Image copy-move tampering detection via an end-to-end deep neural net-work[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, Mar 12-15, 2018. Piscataway: IEEE, 2018: 1907-1915.
[14] LONG J, SHELHAMER E, DARRELL T. Fully convolu-tional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pat-tern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 3431-3440.
[15] WU Y, ABD-ALMAGEED W, NATARAJAN P. BusterNet: detecting copy-move image tampering with source/target localization[C]//LNCS 11210: Proceedings of the 15th Euro-pean Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 170-186.
[16] CHEN B, TAN W, COATRIEUX G, et al. A serial image copy-move tampering localization scheme with source/target distin-guishment[J]. IEEE Transactions on Multimedia, 2021, 23: 3506-3517.
[17] HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//LNCS 9908: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 630-645.
[18] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Pisca-taway: IEEE, 2018: 4510-4520.
[19] CHOLLET F. Xception: deep learning with depthwise sepa-rable convolutions[C]//Proceedings of the 2017 IEEE Con-ference on Computer Vision and Pattern Recognition, Ho-nolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1800-1807.
[20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Represen-tations, San Diego, May 7-9, 2015: 1-15.
[21] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[22] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder- decoder with atrous separable convolution for semantic image segmentation[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 833-851.
[23] ZHOU P, HAN X, MORARIU V I, et al. Learning rich features for image manipulation detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Pisca-taway: IEEE, 2018: 1053-1061.
[24] FRIDRICH J, KODOVSKY J. Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 868-882.
[25] TRALIC D, ZUPANCIC I, GRGIC S, et al. CoMoFoD — new database for copy-move forgery detection[C]//Procee-dings of the ELMAR-2013, Zadar, Sep 25-27, 2013. Piscata-way: IEEE, 2013: 49-54. |