Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (12): 2832-2840.DOI: 10.3778/j.issn.1673-9418.2104086
• Artificial Intelligence • Previous Articles Next Articles
WANG Lin1, SUN Qian1, MA Xiaona1, GAO Yongyan2, LIU Yi1, MA Hongwei1, YANG Dongqiang1,+()
Received:
2021-04-13
Revised:
2021-06-01
Online:
2022-12-01
Published:
2021-06-08
About author:
WANG Lin, born in 1975, M.S. candidate, lecturer. Her research interests include machine learning, intelligent city, etc.Supported by:
王琳1, 孙倩1, 马晓娜1, 高永艳2, 刘毅1, 马宏伟1, 杨东强1,+()
通讯作者:
+E-mail: ydq@sdjzu.edu.cn作者简介:
王琳(1975—),女,山东泗水人,硕士研究生,讲师,主要研究方向为机器学习、智慧城市等。基金资助:
CLC Number:
WANG Lin, SUN Qian, MA Xiaona, GAO Yongyan, LIU Yi, MA Hongwei, YANG Dongqiang. Research on Prediction Model of Physical Activity Energy Expenditure with Wearable Sensors[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2832-2840.
王琳, 孙倩, 马晓娜, 高永艳, 刘毅, 马宏伟, 杨东强. 可穿戴传感器的人体活动能量预测模型研究[J]. 计算机科学与探索, 2022, 16(12): 2832-2840.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104086
被试基本信息 | 传感器 | 速度水平/(km/h) | 采样频率/Hz | |
---|---|---|---|---|
人数 | 10人7男3女 | 臀部三轴加速度器HPA | 3.2 | 0.2 |
年龄/岁 | 49±12 | 脚踝三轴加速度器AKA | 4.8 | |
身高/cm | 178±10 | 臀部三轴陀螺仪HPG | 6.4 | |
体重/kg | 80.7±4.6 | 脚踝三轴陀螺仪AKG |
Table 1 Experimental parameters
被试基本信息 | 传感器 | 速度水平/(km/h) | 采样频率/Hz | |
---|---|---|---|---|
人数 | 10人7男3女 | 臀部三轴加速度器HPA | 3.2 | 0.2 |
年龄/岁 | 49±12 | 脚踝三轴加速度器AKA | 4.8 | |
身高/cm | 178±10 | 臀部三轴陀螺仪HPG | 6.4 | |
体重/kg | 80.7±4.6 | 脚踝三轴陀螺仪AKG |
特征分类 | 特征 | 计算方法 |
---|---|---|
时域特征 | Counts | |
均值mean | ||
标准差SD | ||
变异系数CV | ||
最小值、最大值 | Max、min | |
分位点 | 第10、25、50、75、90分位点 | |
IQR | ||
频域特征 | 主频 | 通过快速傅里叶变换获得 |
振幅 | 通过快速傅里叶变换获得 | |
光谱熵 |
Table 2 Time-domains and frequency-domains characteristics of PAEE
特征分类 | 特征 | 计算方法 |
---|---|---|
时域特征 | Counts | |
均值mean | ||
标准差SD | ||
变异系数CV | ||
最小值、最大值 | Max、min | |
分位点 | 第10、25、50、75、90分位点 | |
IQR | ||
频域特征 | 主频 | 通过快速傅里叶变换获得 |
振幅 | 通过快速傅里叶变换获得 | |
光谱熵 |
被试者 | 组内数据结果(F值) | |||
---|---|---|---|---|
HAcount | HGcount | AAcount | AGcount | |
被试1 | 13.165 350 | 0.646 716 | 1.983 844 | 0.635 209 |
被试2 | 4.269 025 | 0.089 645 | 1.974 077 | 0.858 583 |
Table 3 Significant difference test results
被试者 | 组内数据结果(F值) | |||
---|---|---|---|---|
HAcount | HGcount | AAcount | AGcount | |
被试1 | 13.165 350 | 0.646 716 | 1.983 844 | 0.635 209 |
被试2 | 4.269 025 | 0.089 645 | 1.974 077 | 0.858 583 |
比较策略 | 评估结果 | |
---|---|---|
选择方法 | CfsSubsetEval+bestFirst[ | |
选取特征 | 6,7,68,79,83,87∶6 | |
回归方法 | 多线性回归 | |
特征选择前 | CC | 0.291 1 |
MAE | 1.142 0 | |
特征选择后 | CC | 0.829 4 |
MAE | 0.533 8 |
Table 4 Comparison of evaluation results before and after feature selection (correlation coefficient)
比较策略 | 评估结果 | |
---|---|---|
选择方法 | CfsSubsetEval+bestFirst[ | |
选取特征 | 6,7,68,79,83,87∶6 | |
回归方法 | 多线性回归 | |
特征选择前 | CC | 0.291 1 |
MAE | 1.142 0 | |
特征选择后 | CC | 0.829 4 |
MAE | 0.533 8 |
比较策略 | 评估结果 | |
---|---|---|
选择方法 | 互信息 | |
选取特征 | 3,21,27,7,6,2,69,26,114,12,28,70,68,125,61,120,10,112,22,123∶20 | |
回归方法 | 多线性回归 | |
特征选择前 | CC | 0.417 7 |
MAE | 0.428 2 | |
特征选择后 | CC | 0.905 5 |
MAE | 0.399 9 |
Table 5 Comparison of evaluation results before and after feature selection (MI)
比较策略 | 评估结果 | |
---|---|---|
选择方法 | 互信息 | |
选取特征 | 3,21,27,7,6,2,69,26,114,12,28,70,68,125,61,120,10,112,22,123∶20 | |
回归方法 | 多线性回归 | |
特征选择前 | CC | 0.417 7 |
MAE | 0.428 2 | |
特征选择后 | CC | 0.905 5 |
MAE | 0.399 9 |
比较策略 | 评估结果 | |
---|---|---|
选择方法 | 包装(wrapper) | |
选取特征 | 3,21,27,7,6,2,69,26,114,12,28,70,68,125,61,120,10,112,22,123:20 | |
支持向量机方法 | RBF+ranker | |
特征选择前 | CC | 0.291 1 |
MAE | 1.142 0 | |
特征选择后 | CC | 0.860 8 |
MAE | 0.470 4 |
Table 6 Comparison of evaluation results before and after feature selection (wrapper)
比较策略 | 评估结果 | |
---|---|---|
选择方法 | 包装(wrapper) | |
选取特征 | 3,21,27,7,6,2,69,26,114,12,28,70,68,125,61,120,10,112,22,123:20 | |
支持向量机方法 | RBF+ranker | |
特征选择前 | CC | 0.291 1 |
MAE | 1.142 0 | |
特征选择后 | CC | 0.860 8 |
MAE | 0.470 4 |
方法 | 参数 | CC | MAE |
---|---|---|---|
ElasticNET | 0.783 4 | 0.561 6 |
Table 7 Evaluation results of embedded method (elastic network)
方法 | 参数 | CC | MAE |
---|---|---|---|
ElasticNET | 0.783 4 | 0.561 6 |
特征选择方法 | 机器学习算法 | CC | MAE |
---|---|---|---|
相关系数方法 | 神经网络 | 0.870 1 | 0.453 4 |
互信息方法 | 支持向量机 | 0.739 4 | 0.542 8 |
包装方法 | 支持向量机 | 0.860 8 | 0.470 4 |
嵌入式方法 | 弹性网络 | 0.783 8 | 0.560 1 |
Table 8 Summary of evaluation results of optimal combination methods
特征选择方法 | 机器学习算法 | CC | MAE |
---|---|---|---|
相关系数方法 | 神经网络 | 0.870 1 | 0.453 4 |
互信息方法 | 支持向量机 | 0.739 4 | 0.542 8 |
包装方法 | 支持向量机 | 0.860 8 | 0.470 4 |
嵌入式方法 | 弹性网络 | 0.783 8 | 0.560 1 |
[1] |
LIU S P, GAO R X, FREEDSON P S. Computational methods for estimating energy expenditure in human physical activities[J]. Medicine and Science in Sports and Exercise, 2012, 44(11): 2138-2146.
DOI PMID |
[2] |
MIGUELES J H, CADENAS-SANCHEZ C, EKELUND U, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations[J]. Sports Medicine, 2017, 47(9): 1821-1845.
DOI PMID |
[3] | 范江江, 陈庆果. 加速度计测量体力活动的算法研究进展[J]. 湖北体育科技, 2016, 35(7): 595-598. |
FAN J J, CHEN Q G. Study of the calculating methods on physical activities with acceleration[J]. Hubei Sports Science, 2016, 35(7): 595-598. | |
[4] | 陈庆果, 袁川, 范江江, 等. 智能手机内置加速度传感器监测走跑运动能量消耗的研究[J]. 首都体育学院学报, 2018, 30(5): 473-480. |
CHEN Q G, YUAN C, FAN J J, et al. Assessment of energy expenditure of walking and running using built-in accelerometer of smartphones[J]. Journal of Capital University of Physical Education and Sports, 2018, 30(5): 473-480. | |
[5] | 陈庆果, 李翔. 佩戴部位对加速度计能耗监测准确性的影响: 算法的调节效应[J]. 中国体育科技, 2019, 55(3): 73-81. |
CHEN Q G, LI X. Effects of wearing sites of accelerometer on accuracy prediction of energy expenditure: moderating effect of algorithm[J]. China Sport Science and Technology, 2019, 55(3): 73-81. | |
[6] |
HAMID A. Predicting children’s energy expenditure during physical activity using deep learning and wearable sensor data[J]. European Journal of Sport Science, 2021, 21(6): 918-926.
DOI URL |
[7] |
钱慧芳, 易剑平, 付云虎. 基于深度学习的人体动作识别综述[J]. 计算机科学与探索, 2021, 15(3): 438-455.
DOI URL |
QIAN H F, YI J P, FU Y H. Review of human action recognition based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 438-455.
DOI URL |
|
[8] | 陆姣姣, 邱俊. 加速度计在能量消耗预测中的应用研究综述[J]. 南京体育学院学报, 2014, 13(4): 24-29. |
LU J J, QIU J. A review of accelerometer for activity energy expenditure estimating[J]. Journal of Nanjing Sports Institute, 2014, 13(4): 24-29. | |
[9] | SCHULDHAUS D, DORN S, LEUTHEUSER H, et al. An adaptable inertial sensor fusion-based approach for energy expenditure estimation[C]// Proceedings of the 15th International Conference on Biomedical Engineering, Singapore, Dec 4-7, 2013. Berlin, Heidelberg: Springer, 2013: 124-127. |
[10] | 赵蕊. 基于WEKA平台的决策树算法设计与实现[D]. 长沙: 中南大学, 2007. |
ZHAO R. Design and implementation of decision tree algorithm based on WEKA platform[D]. Changsha: Central South University, 2007. | |
[11] | 袁梅宇. 数据挖掘与机器学习——WEKA应用技术与实践[M]. 2版. 北京: 清华大学出版社, 2019. |
YUAN M Y. Data mining and machine learning—WEKA application technology and practice[M]. 2nd ed. Beijing: Tsinghua University Press, 2019. | |
[12] | 黄仁, 田丰, 田维兴. 基于加速度传感器的运动模式识别[J]. 计算机工程与应用, 2015, 51(6): 235-239. |
HUANG R, TIAN F, TIAN W X. Motion pattern recognition using acceleration transducer[J]. Computer Engineering and Applications, 2015, 51(6): 235-239. | |
[13] | 张昕阳. 运动方式识别和能量消耗模型的研究[D]. 上海: 华东师范大学, 2015. |
ZHANG X Y. Research on motion pattern recognition and energy consumption model[D]. Shanghai: East China Normal University, 2015. | |
[14] | 梁志国, 孟晓风. 正弦波形参数拟合方法述评[J]. 测试技术学报, 2010, 24(1): 1-8. |
LIANG Z G, MENG X F. Review of sine wave curve-fit methods[J]. Journal of Test and Measurement Technology, 2010, 24(1): 1-8. | |
[15] | 齐国清, 吕健. 正弦曲线拟合若干问题探讨[J]. 计算机工程与设计, 2008, 29(14): 3677-3680. |
QI G Q, LV J. Investigation of sine wave fitting algorithms[J]. Computer Engineering and Design, 2008, 29(14): 3677-3680. | |
[16] | 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27(2): 161-166. |
YAO X, WANG X D, ZHANG Y X, et al. Summary of feature selection algorithms[J]. Control and Decision, 2012, 27(2): 161-166. | |
[17] |
HANCER E, XUE B, ZHANG M J. A survey on feature selection approaches for clustering[J]. Artificial Intelligence Review, 2020, 53(6): 4519-4545.
DOI URL |
[18] | 刘毛溪, 万鸣华, 孙成立, 等. 无监督的稀疏差分嵌入特征提取方法[J]. 小型微型计算机系统, 2017, 38(5): 1134-1138. |
LIU M X, WAN M H, SUN C L, et al. Unsupervised sparse difference embedding for feature extraction[J]. Journal of Chinese Computer Systems, 2017, 38(5): 1134-1138. | |
[19] | 田冰. 经典统计学与机器学习中变量选择方法的比较分析[D]. 济南: 山东大学, 2019. |
TIAN B. Comparative analysis of variable selection methods in classical statistics and machine learning[D]. Jinan: Shandong University, 2019. | |
[20] |
GJORESKI H, KALUŽA B, GAMS M, et al. Context-based ensemble method for human energy expenditure estimation[J]. Applied Soft Computing, 2015, 37: 960-970.
DOI URL |
[21] |
MONTOYE A H K, BEGUM M, HENNING Z, et al. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data[J]. Physiological Measurement, 2017, 38(2): 343-357.
DOI PMID |
[22] |
郑增威, 杜俊杰, 霍梅梅, 等. 基于可穿戴传感器的人体活动识别研究综述[J]. 计算机应用, 2018, 38(5): 1223-1229.
DOI |
ZHENG Z W, DU J J, HUO M M, et al. Review of human activity recognition based on wearable sensors[J]. Journal of Computer Applications, 2018, 38(5): 1223-1229.
DOI |
|
[23] |
DE CRAEMER M, DE DECKER E, SANTOS-LOZANO A, et al. Validity of the Omron pedometer and the actigraph step count function in preschoolers[J]. Journal of Science and Medicine in Sport, 2015, 18(3): 289-293.
DOI PMID |
[24] | 卢颖. 广义线性模型基于Elastic Net的变量选择方法研究[D]. 北京: 北京交通大学, 2011: 86-123. |
LU Y. Research on variable selection method for generalized linear models based on Elastic Net[D]. Beijing: Beijing Jiaotong University, 2011: 86-123. | |
[25] | 樊振宇. BP神经网络模型与学习算法[J]. 软件导刊, 2011, 10(7): 66-68. |
FAN Z Y. BP neural network model and learning algorithm[J]. Software Guide, 2011, 10(7): 66-68. | |
[26] | FAN J, LV J. A selective overview of variable selection in high dimensional feature space[J]. Statistical Sinica, 2010, 20(1): 101-148. |
[27] | 王三保, 陈浩. 人体运动能量消耗测量的方法学分析[J]. 体育时空, 2013(9): 128-129. |
WANG S B, CHEN H. Methodological analysis of measurement of human sports energy consumption[J]. Sports Time and Space, 2013(9): 128-129. | |
[28] | ZHANG C H. Nearly unbiased variable selection under minimax concave penalty[J]. The Annals of Statistics, 2010, 38(2): 894-942. |
[1] | SUN Shuifa, LI Xiaolong, LI Weisheng, LEI Dajiang, LI Sihui, YANG Liu, WU Yirong. Review of Graph Neural Networks Applied to Knowledge Graph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 27-52. |
[2] | WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong. Survey on 3D Human Pose Estimation of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. |
[3] | PI Hong, LUO Chuan, LI Tianrui, CHEN Hongmei. Improved Fuzzy Rank Mutual Information for Monotonic Feature Selection [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 108-115. |
[4] | MA Fuyuan, WANG Ying, LI Lina, WANG Hongji. Structure and Feature Fusion Graph Hierarchical Pooling Model [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 179-186. |
[5] | GAO Yang, LIU Yuan. Recommendation Algorithm Combining Social Relationship and Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 238-250. |
[6] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
[7] | ZHU Bingyu, LIU Zhen, ZHANG Jingxiang. COVID-19 Detection Algorithm Combining Grad-CAM and Convolutional Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2108-2120. |
[8] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[9] | HUANG Hao, GE Hongwei. Deep Residual Expression Recognition Network to Enhance Inter-class Discrimination [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1842-1849. |
[10] | YU Huilin, CHEN Wei, WANG Qi, GAO Jianwei, WAN Huaiyu. Knowledge Graph Link Prediction Based on Subgraph Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1800-1808. |
[11] | LI Yuxuan, HONG Xuehai, WANG Yang, TANG Zhengzheng, BAN Yan. Groupwise Learning to Rank Algorithm with Introduction of Activated Weighting [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1594-1602. |
[12] | ZHANG Yancao, ZHAO Yuhai, SHI Lan. Multi-feature Based Link Prediction Algorithm Fusing Graph Attention [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1096-1106. |
[13] | OU Yangliu, HE Xi, QU Shaojun. Fully Convolutional Neural Network with Attention Module for Semantic Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1136-1145. |
[14] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
[15] | TONG Gan, HUANG Libo. Review of Winograd Fast Convolution Technique Research [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 959-971. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/