
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (11): 2981-2993.DOI: 10.3778/j.issn.1673-9418.2501001
• Graphics·Image • Previous Articles Next Articles
FENG Yong'an, ZHANG Ziyang, ZHANG Xu
Online:2025-11-01
Published:2025-10-30
冯永安,张紫扬,张旭
FENG Yong'an, ZHANG Ziyang, ZHANG Xu. Dual-Refinement Gate-Controlled Adaptive Fusion Algorithm for Road Crack Detection[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(11): 2981-2993.
冯永安, 张紫扬, 张旭. 双重细化门控自适应融合的道路裂缝检测算法[J]. 计算机科学与探索, 2025, 19(11): 2981-2993.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2501001
| [1] SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445. [2] FAN L L, WANG D D, WANG J H, et al. Pavement defect detection with deep learning: a comprehensive survey[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(3): 4292-4311. [3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. [4] CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498. [5] LIANG F T, ZHOU Y, CHEN X, et al. Review of target detection technology based on deep learning[C]//Proceedings of the 5th International Conference on Control Engineering and Artificial Intelligence. New York: ACM, 2021: 132-135. [6] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015: 91-99. [7] ZHANG K H, SHEN H K. Solder joint defect detection in the connectors using improved Faster-RCNN algorithm[J]. Applied Sciences, 2021, 11(2): 576. [8] YANG A M, JIANG T Y, HAN Y, et al. Research on application of on-line melting in-SITU visual inspection of iron ore powder based on Faster R-CNN[J]. Alexandria Engineering Journal, 2022, 61(11): 8963-8971. [9] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. [10] JIANG P Y, ERGU D, LIU F Y, et al. A review of Yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073. [11] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2024-11-20]. https://arxiv.org/abs/1804.02767. [12] WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of the 18th European Conference on Computer Vision. Cham: Springer, 2024: 1-21. [13] 任晶晶, 徐志远. 基于YOLOv8的轻量化道路裂缝检测模型[J]. 山西电子技术, 2024(4): 54-56. REN J J, XU Z Y. A lightweight road crack detection model based on YOLOv8[J]. Shanxi Electronic Technology, 2024(4): 54-56. [14] 蒋大伟, 吴正平, 景思伟. 基于改进YOLOv5的道路缺陷检测与分类研究[J]. 信息技术与信息化, 2024(2): 31-34. JIANG D W, WU Z P, JING S W. Research on road defect detection and classification based on improved YOLOv5[J]. Information Technology and Informatization, 2024(2): 31-34. [15] 杨豪, 刘李彦, 张军辉, 等. 环境适应性优化的轻量化多尺度道路裂缝检测[J]. 中国公路学报, 2025, 38(7): 118-134. YANG H, LIU L Y, ZHANG J H, et al. Environmental adaptability optimization lightweight multi-scale road crack detection[J]. China Journal of Highway and Transport, 2025, 38(7): 118-134. [16] 宣以国, 余成波, 蒋启超, 等. 基于改进YOLOv7的道路裂缝和坑洞检测算法[J]. 科学技术与工程, 2024, 24(17): 7205-7213. XUAN Y G, YU C B, JIANG Q C, et al. Improved YOLOv7 road crack and pothole detection algorithm[J]. Science Technology and Engineering, 2024, 24(17): 7205-7213. [17] 侯涛, 张田明, 牛宏侠. MFF-YOLO: 多尺度特征融合的轻量级道路缺陷检测算法[J/OL]. 工程科学与技术 [2024-11-20]. https://kns.cnki.net/kcms/detail/51.1773.TB.20241115. 1437.003.html. HOU T, ZHANG T M, NIU H X. MFF-YOLO: a lightweight road damage detection algorithm based on multiscale feature fusion[J/OL]. Advanced Engineering Sciences[2024-11-20]. https://kns.cnki.net/kcms/detail/51.1773.TB. 20241115.1437.003.html. [18] 李胜杰, 刘贵如, 王陆林, 等. 一种轻量化YOLOv5道路缺陷检测算法[J/OL]. 天津理工大学学报 [2024-11-20]. https:// kns.cnki.net/kcms/detail/12.1374.N.20241101. 1754.006.html. LI S J, LIU G R, WANG L L, et al. A lightweight YOLOv5 road defect detection algorithm[J/OL]. Journal of Tianjin University of Technology [2024-11-20]. https://kns.cnki.net/kcms/detail/12.1374.N.20241101.1754.006.html. [19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [20] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229. [21] MENG D P, CHEN X K, FAN Z J, et al. Conditional DETR for fast training convergence[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3631-3640. [22] ZHU X Z, SU W J, LU L W, et al. Deformable-DETR: deformable transformers for end-to-end object detection[EB/OL]. [2024-11-20]. https://arxiv.org/abs/2010.04159. [23] LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate DETR training by introducing query denoising[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13609-13617. [24] LIU S L, LI F, ZHANG H, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[EB/OL]. [2024-11-21]. https://arxiv.org/abs/2201.12329. [25] 许正森, 雷相达, 管海燕. 多尺度局部特征增强Transformer道路裂缝检测模型[J]. 中国图象图形学报, 2023, 28(4): 1019-1028. XU Z S, LEI X D, GUAN H Y. Multi-scale local feature enhanced transformer network for pavement crack detection[J]. Journal of Image and Graphics, 2023, 28(4): 1019-1028. [26] 刘知阳. 基于Transformer的道路裂缝检测研究[D]. 汉中: 陕西理工大学, 2024. LIU Z Y. Research on road crack detection based on transformer[D]. Hanzhong: Shaanxi University of Technology, 2024. [27] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974. [28] ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2735-2745. [29] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[EB/OL]. [2024-11-21]. https://arxiv.org/abs/1709.01507. [30] CHEN J R, KAO S H, HE H, et al. Run, don??t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031. [31] CHEN Y P, FAN H Q, XU B, et al. Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3434-3443. [32] ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with bi-level routing attention[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 10323-10333. [33] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352. [34] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807. [35] ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[EB/ OL]. [2024-11-21]. https://arxiv.org/abs/2203.03605. [36] ARYA D, MAEDA H, GHOSH S K, et al. RDD2022: a multi-national image dataset for automatic road damage detection[J]. Geoscience Data Journal, 2024, 11(4): 846-862. [37] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8514-8523. |
| [1] | WEI Zongyue, QIU Dawei, LIU Jing, LI Zhenjiang, CHANG Shaohua. Research and Progress of Deep Learning in Diagnosis of Upper Limb Fractures [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2341-2362. |
| [2] | LA Chao, LI Miao, ZHANG Feng, ZHANG Cuiting. Design of Energy-Efficient CNN Accelerator [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(9): 2520-2531. |
| [3] | LI Shunyong, LI Jiaming, CAO Fuyuan, ZHENG Mengjiao. Deep Multi-view Clustering Network Integrating Local and Global Features [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2085-2098. |
| [4] | ZHANG Limin, LI Yang, CAI Hao, YAN Hao. Multi-level Channel Fusion Method for Speech Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2219-2228. |
| [5] | FENG Yong, LUAN Chaojie, WANG Rongbing, XU Hongyan, ZHANG Yonggang. Aggregating Global Interaction and Local Interaction for Knowledge Graph Completion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1909-1917. |
| [6] | GU Ao, FANG Yanhong. Image Super-Resolution Based on Geometric Constraints and Structural Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(7): 1868-1877. |
| [7] | ZUO Jing, SHI Yangyu, LU Shuhua. Improved X-ray Prohibited Items Detection Method Based on Lightweight Convolution Blocks and SCAM [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(6): 1598-1610. |
| [8] | GAO Lei, QIAO Haowei, LIANG Dongsheng, MIN Fan, YANG Mei. Efficient Seismic Denoising Transformer with Gradient Prediction and Parameter-Free Attention [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1342-1352. |
| [9] | LIU Guihong, ZHOU Zongrun, MENG Xiangfu. Pedestrian Trajectory Prediction Based on Transformer and Multi-relation Graph Convolutional Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1353-1364. |
| [10] | LI Guowei, LIU Jing, CAO Hui, JIANG Liang. Research Review of Deep Learning in Colon Polyp Image Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1198-1216. |
| [11] | YANG Sinian, CAO Lijia, YANG Yang, GUO Chuandong. Review of PCB Defect Detection Algorithm Based on Machine Vision [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 901-915. |
| [12] | ZHANG Yumeng, ZHANG Xin, GAO Mou, ZHAO Hulin. Incorporating Dynamic Convolution and Attention Mechanism in Multilayer Perceptron for Speech Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 1065-1075. |
| [13] | TIAN Jishuai, AI Fangju. Aspect-Level Sentiment Analysis Based on Enhanced Syntactic Information and Multi-feature Graph Convolutional Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 738-748. |
| [14] | YUAN Lining, FENG Wengang, LIU Zhao. Node Classification Based on Kolmogorov-Arnold Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(3): 645-656. |
| [15] | FENG Lizhou, SONG Jinlin, YANG Guijun, WANG Youwei. Aspect-Based Sentiment Classification Method with Domain Knowledge Triples and Graph Convolutional Networks [J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(12): 3368-3379. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/