Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (12): 2718-2733.DOI: 10.3778/j.issn.1673-9418.2204041
• Surveys and Frontiers • Previous Articles Next Articles
LIU Wenqiang, QIU Hangping(), LI Hang, YANG Li, LI Yang, MIAO Zhuang, LI Yi, ZHAO Xinxin
Received:
2022-04-13
Revised:
2022-07-13
Online:
2022-12-01
Published:
2022-12-16
About author:
LIU Wenqiang, born in 1996, M.S. candidate. His research interests include machine vision and multi-object tracking.Supported by:
刘文强, 裘杭萍(), 李航, 杨利, 李阳, 苗壮, 李一, 赵昕昕
通讯作者:
+E-mail: 13952004682@139.com作者简介:
刘文强(1996—),男,江西上饶人,硕士研究生,主要研究方向为机器视觉、多目标跟踪。基金资助:
CLC Number:
LIU Wenqiang, QIU Hangping, LI Hang, YANG Li, LI Yang, MIAO Zhuang, LI Yi, ZHAO Xinxin. Survey of Deep Online Multi-object Tracking Algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2718-2733.
刘文强, 裘杭萍, 李航, 杨利, 李阳, 苗壮, 李一, 赵昕昕. 深度在线多目标跟踪算法综述[J]. 计算机科学与探索, 2022, 16(12): 2718-2733.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2204041
所属分类 | 算法特点 | 优势 | 不足 |
---|---|---|---|
DBE | 裁剪目标补丁进行分类学习 | 单独训练,可使用大量外部数据训练,可灵活地结合现成最佳的检测模型、REID模型和关联模型 | 多阶段训练,过程复杂,可能得到次优解,以单独的裁剪图像作为样本,无法学习轨迹的时空信息 |
DBP | 提取单帧特征,然后聚合多帧外观和运动特征 | 能够联合学习目标的运动特征和表观特征以及它们的时空一致性 | 需要额外的时序网络学习多帧轨迹特征的交互,增加了训练和测试的计算成本 |
DBA | 使用分配矩阵监督学习运动特征和表观特征 | 将分配矩阵作为训练目标,对齐了训练和推理过程,可以学习轨迹之间的交互,使运动特征和表观特征向着有利于跟踪指标的方向学习 | 进一步增加了复杂度,研究不够深入,还需要进一步探索 |
JDE | 在检测算法中添加一个头部网络提取表观特征 | 只需一个共享的骨干网络,就能同时完成目标检测和表观特征的提取,并且可以扩展到提取多帧外观的聚合特征,简化了跟踪算法的框架 | 目前这一框架通常用一个多分类任务学习表观特征,这导致头部的分类器随着轨迹数量的改变而改变,并且作为多任务学习框架,任务之间的矛盾问题依然突出 |
JDP | 在网络头部共同学习跨多帧的外观和运动特征,预测目标两帧间的位移 | 能够通过多帧特征聚合学习到轨迹特征,并利用视觉信息预测目标位移从而不依赖于先验的运动建模 | 由于计算成本,目前这种联合检测的跨帧特征建模通常只能使用相邻的几个帧,短轨迹学习到的运动特征不鲁棒,无法建模长期依赖信息 |
JDA | 直接建模轨迹(查询)特征,该特征可以直接用来定位并识别目标,完成从检测到关联的端到端的跟踪 | 能够实现完全端到端的跟踪,轨迹特征可以学习到全局信息,包括时空一致性、轨迹与背景的相关性以及轨迹之间的交互 | 在对象被长时间遮挡时,轨迹嵌入容易发生偏移,导致跟踪器逐渐丢失目标 |
Table 1 Summary of characteristics of different types of online multi-object tracking algorithms
所属分类 | 算法特点 | 优势 | 不足 |
---|---|---|---|
DBE | 裁剪目标补丁进行分类学习 | 单独训练,可使用大量外部数据训练,可灵活地结合现成最佳的检测模型、REID模型和关联模型 | 多阶段训练,过程复杂,可能得到次优解,以单独的裁剪图像作为样本,无法学习轨迹的时空信息 |
DBP | 提取单帧特征,然后聚合多帧外观和运动特征 | 能够联合学习目标的运动特征和表观特征以及它们的时空一致性 | 需要额外的时序网络学习多帧轨迹特征的交互,增加了训练和测试的计算成本 |
DBA | 使用分配矩阵监督学习运动特征和表观特征 | 将分配矩阵作为训练目标,对齐了训练和推理过程,可以学习轨迹之间的交互,使运动特征和表观特征向着有利于跟踪指标的方向学习 | 进一步增加了复杂度,研究不够深入,还需要进一步探索 |
JDE | 在检测算法中添加一个头部网络提取表观特征 | 只需一个共享的骨干网络,就能同时完成目标检测和表观特征的提取,并且可以扩展到提取多帧外观的聚合特征,简化了跟踪算法的框架 | 目前这一框架通常用一个多分类任务学习表观特征,这导致头部的分类器随着轨迹数量的改变而改变,并且作为多任务学习框架,任务之间的矛盾问题依然突出 |
JDP | 在网络头部共同学习跨多帧的外观和运动特征,预测目标两帧间的位移 | 能够通过多帧特征聚合学习到轨迹特征,并利用视觉信息预测目标位移从而不依赖于先验的运动建模 | 由于计算成本,目前这种联合检测的跨帧特征建模通常只能使用相邻的几个帧,短轨迹学习到的运动特征不鲁棒,无法建模长期依赖信息 |
JDA | 直接建模轨迹(查询)特征,该特征可以直接用来定位并识别目标,完成从检测到关联的端到端的跟踪 | 能够实现完全端到端的跟踪,轨迹特征可以学习到全局信息,包括时空一致性、轨迹与背景的相关性以及轨迹之间的交互 | 在对象被长时间遮挡时,轨迹嵌入容易发生偏移,导致跟踪器逐渐丢失目标 |
数据集名称 | 年份 | 特点 | 链接 |
---|---|---|---|
DanceTrack[ | 2021 | 跟踪舞台中的演员,目标运动模式复杂,动作幅度大,单个目标外观变化大,同时多个目标服饰相同外观相似 | |
CroHD[ | 2021 | 提供行人头部标注,用以缓解跟踪场景中的严重遮挡,数据集包括较高视角下室内外的拥挤人群 | |
MOT dataset[ | 2015—2020 | 多目标跟踪的集中式基准,包含多个数据集 | |
MOTS[ | 2019 | 多目标跟踪与分割数据集,在部分KITTI和MOT17数据上提供像素级的标注 | |
Vis Drone[ | 2021 | 无人机视角下的多目标跟踪数据集 | |
UA-DETRAC[ | 2020 | 多种场景下的多个类的车辆检测与跟踪标注 | |
KITTI-Tracking[ | 2013 | 稀疏场景下的行人与车辆跟踪数据集 | |
KIT AIS | 2012 | 航拍图像序列的车辆与行人跟踪数据集 | KIT-IPF-Datensätze und Software |
TownCentre | 2009 | 街景行人跟踪数据集,场景简单,标注完整,画面清晰,数据量较少 | |
Table 2 Multi-object tracking datasets
数据集名称 | 年份 | 特点 | 链接 |
---|---|---|---|
DanceTrack[ | 2021 | 跟踪舞台中的演员,目标运动模式复杂,动作幅度大,单个目标外观变化大,同时多个目标服饰相同外观相似 | |
CroHD[ | 2021 | 提供行人头部标注,用以缓解跟踪场景中的严重遮挡,数据集包括较高视角下室内外的拥挤人群 | |
MOT dataset[ | 2015—2020 | 多目标跟踪的集中式基准,包含多个数据集 | |
MOTS[ | 2019 | 多目标跟踪与分割数据集,在部分KITTI和MOT17数据上提供像素级的标注 | |
Vis Drone[ | 2021 | 无人机视角下的多目标跟踪数据集 | |
UA-DETRAC[ | 2020 | 多种场景下的多个类的车辆检测与跟踪标注 | |
KITTI-Tracking[ | 2013 | 稀疏场景下的行人与车辆跟踪数据集 | |
KIT AIS | 2012 | 航拍图像序列的车辆与行人跟踪数据集 | KIT-IPF-Datensätze und Software |
TownCentre | 2009 | 街景行人跟踪数据集,场景简单,标注完整,画面清晰,数据量较少 | |
所属分类 | Method | Detection | Data | MOTA/%↑ | IDF1/%↑ | HOTA/%↑ | FP↓ | FN↓ | IDs↓ | FPS↑ |
---|---|---|---|---|---|---|---|---|---|---|
DBE | HISP[ | public | no | 45.4 | 39.9 | 34.0 | 21 820 | 277 473 | 1 194 | 3.2 |
GM-PHD[ | public | no | 46.8 | 54.1 | 41.5 | 38 452 | 257 678 | 3 865 | 30.8 | |
OTCD[ | public | CP | 48.6 | 47.9 | 38.4 | 18 499 | 268 204 | 3 502 | 15.5 | |
MOTDT[ | public | no | 50.9 | 52.7 | 41.2 | 24 069 | 250 768 | 2 474 | 18.3 | |
UnsupTrack[ | public | no | 61.7 | 58.1 | 46.9 | 16 872 | 197 632 | 1 864 | 2.0 | |
StrongSORT[ | private | CH | 79.6 | 79.5 | 64.4 | 27 876 | 86 205 | 1 194 | 7.1 | |
DBP | Sp_Con[ | public | no | 61.5 | 63.3 | 50.5 | 14 056 | 200 655 | 2 478 | 7.7 |
TrajE[ | public | no | 67.4 | 61.2 | 49.7 | 18 652 | 161 347 | 4 019 | 1.4 | |
FUFET[ | private | 5D1 | 76.2 | 68.0 | 57.9 | 32 796 | 98 475 | 3 237 | 6.8 | |
DBA | DAN[ | private | no | 52.4 | 49.5 | 39.3 | 25 423 | 234 592 | 8 431 | <3.9 |
DeepMOT[ | public | no | 53.7 | 53.8 | 42.4 | 11 731 | 247 447 | 1 947 | 4.9 | |
GCNNMatch[ | public | no | 57.3 | 56.3 | 45.4 | 14 100 | 225 042 | 1 911 | 1.3 | |
JDE | OUTrack[ | public | CH | 69.0 | 66.8 | 54.8 | 28 795 | 141 580 | 4 472 | 27.6 |
GSDT[ | private | 5D2 | 73.2 | 66.5 | 55.2 | 26 397 | 120 666 | 3 891 | 4.9 | |
FairMOT[ | private | 5D1 | 73.7 | 72.3 | 59.3 | 27 507 | 117 477 | 3 303 | 25.9 | |
CSTrack[ | private | 5D2 | 74.9 | 72.6 | 59.3 | 23 847 | 114 303 | 3 567 | 15.8 | |
Corrtracker[ | private | 5D1 | 76.5 | 73.6 | 60.7 | 29 808 | 99 510 | 3 369 | 15.6 | |
JDP | Tracktor++v2[ | public | no | 56.3 | 55.1 | 44.8 | 8 866 | 235 449 | 1 987 | 1.5 |
CenterTrack[ | private | CH | 61.5 | 59.6 | 48.2 | 14 076 | 200 672 | 2 583 | 17.0 | |
Tube_TK[ | private | no | 63.0 | 58.6 | 48.0 | 27 060 | 177 483 | 4 137 | 3.0 | |
Chained-Tracker[ | private | no | 66.6 | 57.4 | 49.0 | 22 284 | 160 491 | 5 529 | 6.8 | |
TransCenter[ | private | no | 70.0 | 62.1 | 52.1 | 28 119 | 136 722 | 4 647 | 1.0 | |
JDA | DASOT[ | public | no | 49.5 | 51.8 | 41.5 | 33 640 | 247 370 | 4 142 | 9.1 |
MOTR[ | private | no | 71.9 | 68.4 | 57.2 | 21 123 | 135 561 | 2 115 | 7.5 | |
TrackFormer[ | private | CH | 74.1 | 68.0 | 57.3 | 34 602 | 108 777 | 2 829 | 5.7 | |
TransTrack[ | private | CH | 75.2 | 63.5 | 54.1 | 50 157 | 86 442 | 3 603 | 10.0 | |
TransMOT[ | private | 2D | 76.7 | 75.1 | 61.7 | 36 231 | 93 150 | 2 346 | 9.6 |
Table 3 Experimental results of different algorithms on MOT17 dataset
所属分类 | Method | Detection | Data | MOTA/%↑ | IDF1/%↑ | HOTA/%↑ | FP↓ | FN↓ | IDs↓ | FPS↑ |
---|---|---|---|---|---|---|---|---|---|---|
DBE | HISP[ | public | no | 45.4 | 39.9 | 34.0 | 21 820 | 277 473 | 1 194 | 3.2 |
GM-PHD[ | public | no | 46.8 | 54.1 | 41.5 | 38 452 | 257 678 | 3 865 | 30.8 | |
OTCD[ | public | CP | 48.6 | 47.9 | 38.4 | 18 499 | 268 204 | 3 502 | 15.5 | |
MOTDT[ | public | no | 50.9 | 52.7 | 41.2 | 24 069 | 250 768 | 2 474 | 18.3 | |
UnsupTrack[ | public | no | 61.7 | 58.1 | 46.9 | 16 872 | 197 632 | 1 864 | 2.0 | |
StrongSORT[ | private | CH | 79.6 | 79.5 | 64.4 | 27 876 | 86 205 | 1 194 | 7.1 | |
DBP | Sp_Con[ | public | no | 61.5 | 63.3 | 50.5 | 14 056 | 200 655 | 2 478 | 7.7 |
TrajE[ | public | no | 67.4 | 61.2 | 49.7 | 18 652 | 161 347 | 4 019 | 1.4 | |
FUFET[ | private | 5D1 | 76.2 | 68.0 | 57.9 | 32 796 | 98 475 | 3 237 | 6.8 | |
DBA | DAN[ | private | no | 52.4 | 49.5 | 39.3 | 25 423 | 234 592 | 8 431 | <3.9 |
DeepMOT[ | public | no | 53.7 | 53.8 | 42.4 | 11 731 | 247 447 | 1 947 | 4.9 | |
GCNNMatch[ | public | no | 57.3 | 56.3 | 45.4 | 14 100 | 225 042 | 1 911 | 1.3 | |
JDE | OUTrack[ | public | CH | 69.0 | 66.8 | 54.8 | 28 795 | 141 580 | 4 472 | 27.6 |
GSDT[ | private | 5D2 | 73.2 | 66.5 | 55.2 | 26 397 | 120 666 | 3 891 | 4.9 | |
FairMOT[ | private | 5D1 | 73.7 | 72.3 | 59.3 | 27 507 | 117 477 | 3 303 | 25.9 | |
CSTrack[ | private | 5D2 | 74.9 | 72.6 | 59.3 | 23 847 | 114 303 | 3 567 | 15.8 | |
Corrtracker[ | private | 5D1 | 76.5 | 73.6 | 60.7 | 29 808 | 99 510 | 3 369 | 15.6 | |
JDP | Tracktor++v2[ | public | no | 56.3 | 55.1 | 44.8 | 8 866 | 235 449 | 1 987 | 1.5 |
CenterTrack[ | private | CH | 61.5 | 59.6 | 48.2 | 14 076 | 200 672 | 2 583 | 17.0 | |
Tube_TK[ | private | no | 63.0 | 58.6 | 48.0 | 27 060 | 177 483 | 4 137 | 3.0 | |
Chained-Tracker[ | private | no | 66.6 | 57.4 | 49.0 | 22 284 | 160 491 | 5 529 | 6.8 | |
TransCenter[ | private | no | 70.0 | 62.1 | 52.1 | 28 119 | 136 722 | 4 647 | 1.0 | |
JDA | DASOT[ | public | no | 49.5 | 51.8 | 41.5 | 33 640 | 247 370 | 4 142 | 9.1 |
MOTR[ | private | no | 71.9 | 68.4 | 57.2 | 21 123 | 135 561 | 2 115 | 7.5 | |
TrackFormer[ | private | CH | 74.1 | 68.0 | 57.3 | 34 602 | 108 777 | 2 829 | 5.7 | |
TransTrack[ | private | CH | 75.2 | 63.5 | 54.1 | 50 157 | 86 442 | 3 603 | 10.0 | |
TransMOT[ | private | 2D | 76.7 | 75.1 | 61.7 | 36 231 | 93 150 | 2 346 | 9.6 |
所属分类 | Method | Detection | Data | MOTA/%↑ | IDF1/%↑ | HOTA/%↑ | FP↓ | FN↓ | IDs↓ | FPS↑ |
---|---|---|---|---|---|---|---|---|---|---|
DBE | GM-PHD[ | public | no | 44.7 | 43.5 | 35.6 | 42 778 | 236 116 | 7 492 | 25.2 |
UnsupTrack[ | public | no | 53.6 | 50.6 | 41.7 | 6 439 | 231 298 | 2 178 | 1.3 | |
StrongSORT[ | private | CH | 73.8 | 77.0 | 62.6 | 16 632 | 117 920 | 770 | 1.4 | |
DBP | Sp_Con[ | public | no | 54.6 | 53.4 | 42.5 | 14 056 | 200 655 | 2 478 | 7.7 |
DBA | GCNNMatch[ | public | no | 54.5 | 49.0 | 40.2 | 9 522 | 223 611 | 2 038 | 0.1 |
JDE | FairMOT[ | private | 5D1 | 61.8 | 67.3 | 54.6 | 103 440 | 88 901 | 5 243 | 13.2 |
OUTrack[ | public | CH | 65.4 | 65.1 | 52.1 | 38 243 | 137 770 | 2 885 | 5.1 | |
CSTrack[ | private | 5D2 | 66.6 | 68.6 | 54.0 | 25 404 | 144 358 | 3 196 | 4.5 | |
GSDT[ | private | 5D2 | 67.1 | 67.5 | 53.6 | 31 507 | 135 395 | 3 230 | 1.5 | |
RelationTrack[ | private | 5D1 | 67.2 | 70.5 | 56.5 | 61 134 | 104 597 | 4 243 | 4.3 | |
JDP | Tracktor++v2[ | public | no | 52.6 | 52.7 | 42.1 | 6 930 | 236 680 | 1 648 | 1.2 |
TransCenter[ | private | no | 58.5 | 49.6 | 43.5 | 64 217 | 146 019 | 4 695 | 1.0 | |
JDA | TransTrack[ | private | CH | 65.0 | 59.4 | 48.9 | 27 191 | 150 197 | 3 608 | 14.9 |
TrackFormer[ | private | CH | 68.6 | 65.7 | 54.7 | 20 348 | 140 373 | 1 532 | 5.7 | |
TransMOT[ | private | CH | 77.5 | 75.2 | 61.9 | 34 201 | 80 788 | 1 615 | 2.6 |
Table 4 Experimental results of different algorithms on MOT20 dataset
所属分类 | Method | Detection | Data | MOTA/%↑ | IDF1/%↑ | HOTA/%↑ | FP↓ | FN↓ | IDs↓ | FPS↑ |
---|---|---|---|---|---|---|---|---|---|---|
DBE | GM-PHD[ | public | no | 44.7 | 43.5 | 35.6 | 42 778 | 236 116 | 7 492 | 25.2 |
UnsupTrack[ | public | no | 53.6 | 50.6 | 41.7 | 6 439 | 231 298 | 2 178 | 1.3 | |
StrongSORT[ | private | CH | 73.8 | 77.0 | 62.6 | 16 632 | 117 920 | 770 | 1.4 | |
DBP | Sp_Con[ | public | no | 54.6 | 53.4 | 42.5 | 14 056 | 200 655 | 2 478 | 7.7 |
DBA | GCNNMatch[ | public | no | 54.5 | 49.0 | 40.2 | 9 522 | 223 611 | 2 038 | 0.1 |
JDE | FairMOT[ | private | 5D1 | 61.8 | 67.3 | 54.6 | 103 440 | 88 901 | 5 243 | 13.2 |
OUTrack[ | public | CH | 65.4 | 65.1 | 52.1 | 38 243 | 137 770 | 2 885 | 5.1 | |
CSTrack[ | private | 5D2 | 66.6 | 68.6 | 54.0 | 25 404 | 144 358 | 3 196 | 4.5 | |
GSDT[ | private | 5D2 | 67.1 | 67.5 | 53.6 | 31 507 | 135 395 | 3 230 | 1.5 | |
RelationTrack[ | private | 5D1 | 67.2 | 70.5 | 56.5 | 61 134 | 104 597 | 4 243 | 4.3 | |
JDP | Tracktor++v2[ | public | no | 52.6 | 52.7 | 42.1 | 6 930 | 236 680 | 1 648 | 1.2 |
TransCenter[ | private | no | 58.5 | 49.6 | 43.5 | 64 217 | 146 019 | 4 695 | 1.0 | |
JDA | TransTrack[ | private | CH | 65.0 | 59.4 | 48.9 | 27 191 | 150 197 | 3 608 | 14.9 |
TrackFormer[ | private | CH | 68.6 | 65.7 | 54.7 | 20 348 | 140 373 | 1 532 | 5.7 | |
TransMOT[ | private | CH | 77.5 | 75.2 | 61.9 | 34 201 | 80 788 | 1 615 | 2.6 |
[1] | LUITEN J, OSEP A, DENDORFER P, et al. HOTA: a higher order metric for evaluating multi-object tracking[J]. arXiv:2009.07736, 2020. |
[2] |
LUO Y, YIN D, WANG A, et al. Pedestrian tracking in sur-veillance video based on modified CNN[J]. Multimedia Tools and Applications, 2018, 77: 24041-24058.
DOI URL |
[3] | HAO J X, ZHOU Y M, ZHANG G S, et al. A review of target tracking algorithm based on UAV[C]// Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems, Shenzhen, Oct 25-27, 2018. Piscataway:IEEE, 2018: 328-333. |
[4] | 刘彩虹, 张磊, 黄华. 交通路口监控视频跨视域多目标跟踪的可视化[J]. 计算机学报, 2018, 41(1): 221-235. |
LIU C H, ZHANG L, HUANG H. Visualization of cross-view multi-object tracking for surveillance videos in crossroad[J]. Chinese Journal of Computers, 2018, 41(1): 221-235. | |
[5] | 金盛龙, 李宇, 黄海宁. 水下多目标方位的联合检测与跟踪[J]. 声学学报, 2019, 44(4): 503-512. |
JIN S L, LI Y, HUANG H N. A unified method for underwater multi-target bearing detection and tracking[J]. Acta Acustica, 2019, 44(4): 503-512. | |
[6] | ZHANG Y F, SUN P Z, JIANG Y J, et al. ByteTrack: multi-object tracking by associating every detection box[J]. arXiv:2110.06864, 2021. |
[7] |
REN S, HE K, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39: 1137-1149.
DOI URL |
[8] |
FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D A, et al. Object detection with discriminatively trained part based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32: 1627-1645.
DOI URL |
[9] | CHOI W, SAVARESE S. Multiple target tracking in world coordinate with single, minimally calibrated camera[C]// LNCS 6314: Proceedings of the 11th European Conference on Computer Vision, Heraklion, Sep 5-11, 2010. Berlin, Heidelberg: Springer, 2010: 553-567. |
[10] | ZADINIA H, SALEEMI I, LI W H, et al. (MP)2T: multiple people multiple parts tracker[C]// LNCS 7577: Proceedings of the 12th European Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 100-114. |
[11] |
SUN Z, CHEN J, CHAO L, et al. A survey of multiple pedestrian tracking based on tracking-by-detection framework[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31: 1819-1833.
DOI URL |
[12] | CIAPARRONE G, SÁNCHEZ F L, TABIK S, et al. Deep learning in video multi-object tracking: a survey[J]. Neuro-computing, 2020, 381: 61-88. |
[13] |
张瑶, 卢焕章, 张路平, 等. 基于深度学习的视觉多目标跟踪算法综述[J]. 计算机工程与应用, 2021, 57(13): 55-66.
DOI |
ZHANG Y, LU H Z, ZHANG L P, et al. Overview of visual multi-object tracking algorithms with deep learning[J]. Computer Engineering and Applications, 2021, 57(13): 55-66.
DOI |
|
[14] | WANG G A, SONG M L, HWANG J N. Recent advances in embedding methods for multi-object tracking: a survey[J]. arXiv:2205.10766, 2022. |
[15] | BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]// Proceedings of the 2016 IEEE International Conference on Image Processing, Phoenix, Sep 25-28, 2016. Piscataway: IEEE, 2016: 3464-3468. |
[16] |
ZHANG L, GRAY H, YE X J, et al. Automatic individual pig detection and tracking in pig farms[J]. Sensors, 2019, 19(5): 1188.
DOI URL |
[17] | LU Y Y, LU C W, TANG C K. Online video object detection using association LSTM[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2363-2371. |
[18] | GIRSHICK R B. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448. |
[19] | DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[J]. arXiv:1605.06409, 2016. |
[20] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. |
[21] | REDMON J, DIVVALA S K, GIRSHICK R B, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 779-788. |
[22] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6517-6525. |
[23] | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020. |
[24] | GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021. |
[25] | CAO J, WENG X, KHIRODKAR R, et al. Observation-centric sort: rethinking sort for robust multi-object tracking[J]. arXiv:2203.14360, 2022. |
[26] | WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]// Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 3645-3649. |
[27] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. |
[28] | ZAGORUYKO S, KOMODAKIS N. Wide residual networks[J]. arXiv:1605.07146, 2016. |
[29] | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1-9. |
[30] | KARTHIK S, PRABHU A, GANDHI V. Simple unsupervised multi-object tracking[J]. arXiv:2006.02609, 2020. |
[31] |
BAISA N L. Occlusion-robust online multi-object visual tracking using a GM-PHD filter with a CNN-based reiden-tification[J]. Journal of Visual Communication and Image Representation, 2021, 80: 103279.
DOI URL |
[32] |
YANG F, CHANG X, SAKTI S, et al. ReMOT: a model-agnostic refinement for multiple object tracking[J]. Image and Vision Computing, 2021, 106: 104091.
DOI URL |
[33] |
BAISA N L. Robust online multi-target visual tracking using a HISP filter with discriminative deep appearance learning[J]. Journal of Visual Communication and Image Representation, 2021, 77: 102952.
DOI URL |
[34] |
ZHANG Y, SHENG H, WU Y, et al. Multiplex labeling graph for near-online tracking in crowded scenes[J]. IEEE Internet of Things Journal, 2020, 7(9): 7892-7902.
DOI URL |
[35] | FENG W T, HU Z H, WU W, et al. Multi-object tracking with multiple cues and switcher-aware classification[J]. arXiv: 1901.06129, 2019. |
[36] |
牛通, 卿粼波, 许盛宇, 等. 基于深度学习的分层关联多行人跟踪[J]. 计算机工程与应用, 2021, 57(8): 96-102.
DOI |
NIU T, QING L B, XU S Y, et al. Multiple target tracking using hierarchical data association based on deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 96-102.
DOI |
|
[37] | CHEN L, AI H Z, ZHUANG Z J, et al. Real-time multiple people tracking with deeply learned candidate selection and person re-identification[C]// Proceedings of the 2018 IEEE International Conference on Multimedia and Expo, San Diego, Jul 23-27, 2018. Washington: IEEE Computer Society, 2018: 1-6. |
[38] | DU Y H, SONG Y, YANG B, et al. StrongSORT: make DeepSORT great again[J]. arXiv: 2202.13514, 2022. |
[39] |
LIU Q, LIU B, WU Y, et al. Real-time online multi-object tracking in compressed domain[J]. IEEE Access, 2019, 7: 76489-76499.
DOI |
[40] | LI W, XIONG Y J, YANG S, et al. Semi-TCL: semi-supervised track contrastive representation learning[J]. arXiv:2107.02396, 2021. |
[41] | WANG Z D, ZHENG L, LIU Y X, et al. Towards real-time multi-object tracking[J]. arXiv:1909.12605, 2019. |
[42] | BABAEE M, LI Z M, RIGOLL G. Occlusion handling in tracking multiple people using RNN[C]// Proceedings of the 2018 IEEE International Conference on Image Processing,Athens, Oct 7-10, 2018. Piscataway: IEEE, 2018: 2715-2719. |
[43] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9: 1735-1780.
PMID |
[44] | GIRBAU A, GIRO-I-NIETO X, RIUS I, et al. Multiple object tracking with mixture density networks for trajectory estimation[J]. arXiv:2106.10950, 2021. |
[45] | HAN S, HUANG P, WANG H, et al. MAT: motion-aware multi-object tracking[J]. arXiv:2009.04794, 2020. |
[46] |
EVANGELIDIS G D, PSARAKIS E Z. Parametric image alignment using enhanced correlation coefficient maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(10): 1858-1865.
DOI PMID |
[47] | SALEH F S, ALIAKBARIAN S, REZATOFIGHI H, et al. Probabilistic tracklet scoring and inpainting for multiple object tracking[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14329-14339. |
[48] | BABAEE M, ATHAR A, RIGOLL G. Multiple people tracking using hierarchical deep tracklet re-identification[J]. arXiv:1811.04091, 2018. |
[49] | FANG K, XIANG Y, LI X C, et al. Recurrent autoregressive networks for online multi-object tracking[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, Mar 12-15, 2018. Washington: IEEE Computer Society, 2018: 466-475. |
[50] | WANG S, SHENG H, ZHANG Y, et al. A general recurrent tracking framework without real data[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 13199-13208. |
[51] | WANG G A, WANG Y Z, GU R S, et al. Split and connect: a universal tracklet booster for multi-object tracking[J]. arXiv:2105.02426, 2021. |
[52] | DAI P, WENG R L, CHOI W, et al. Learning a proposal classifier for multiple object tracking[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2443-2452. |
[53] | KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. |
[54] | PAPAKIS I, SARKAR A, KARPATNE A. GCNNMatch: graph convolutional neural networks for multi-object tracking via sinkhorn normalization[J]. arXiv:2010.00067, 2020. |
[55] | XU Y, BAN Y, ALAMEDA-PINEDA X, et al. DeepMOT: a differentiable framework for training multiple object trackers[J]. arXiv:1906.06618, 2019. |
[56] |
SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681.
DOI URL |
[57] | JIANG X, LI P Z, LI Y L, et al. Graph neural based end-to-end data association framework for online multiple-object tracking[J]. arXiv:1907.05315, 2019. |
[58] | SHAN C B, WEI C B, DENG B, et al. Tracklets predicting based adaptive graph tracking[J]. arXiv:2010.09015, 2020. |
[59] | WENG X S, WANG Y X, MAN Y Z, et al. GNN3DMOT: graph neural network for 3D multi-object tracking with multi-feature learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 6498-6507. |
[60] |
WENG X, YUAN Y, KITANI K. PTP: parallelized tracking and prediction with graph neural networks and diversity sampling[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 4640-4647.
DOI URL |
[61] | LI J H, GAO X, JIANG T T. Graph networks for multiple object tracking[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 708-717. |
[62] | CHU P, WANG J, YOU Q Z, et al. TransMOT: spatial-temporal graph transformer for multiple object tracking[J]. arXiv:2104.00194, 2021. |
[63] | STADLER D, BEYERER J. Modelling ambiguous assignments for multi-person tracking in crowds[C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, Waikoloa, Jan 4-8, 2022. Piscataway: IEEE, 2022: 133-142. |
[64] | REDMON J, FARHADI A. YOLOv3: an incremental improve- ment[J]. arXiv:1804.02767, 2018. |
[65] |
ZHANG Y F, WANG C Y, WANG X G, et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087.
DOI URL |
[66] | LI J X, DING Y, WEI H L. SimpleTrack: rethinking and improving the JDE approach for multi-object tracking[J]. arXiv:2203.03985, 2022. |
[67] |
单兆晨, 黄丹丹, 耿振野, 等. 免锚检测的行人多目标跟踪算法[J]. 计算机工程与应用, 2022, 58(10): 145-152.
DOI |
SHAN Z C, HUANG D D, GENG Z Y, et al. Pedestrian multi-object tracking algorithm of anchor-free detection[J]. Computer Engineering and Applications, 2022, 58(10): 145-152.
DOI |
|
[68] | ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[J]. arXiv:1904.07850, 2019. |
[69] | YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2403-2412. |
[70] |
YANG J M, GE H W, YANG J L, et al. Online multi-object tracking using multi-function integration and tracking simulation training[J]. Applied Intelligence, 2022, 52: 1268-1288.
DOI URL |
[71] | LU Z C, RATHOD V, VOTEL R, et al. RetinaTrack: online single stage joint detection and tracking[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway:IEEE, 2020: 14656-14666. |
[72] | LIANG C, ZHANG Z, LU Y, et al. Rethinking the competition between detection and ReID in multi-object tracking[J]. arXiv:2010.12138, 2020. |
[73] | LIANG C, ZHANG Z P, ZHOU X, et al. One more check: making “fake background” be tracked again[J]. arXiv:2104.09441, 2021. |
[74] | YU E, LI Z L, HAN S D, et al. RelationTrack: relation-aware multiple object tracking with decoupled representation[J]. arXiv:2105.04322, 2021. |
[75] | WANG Y X, WENG X S, KITANI K. Joint detection and multi-object tracking with graph neural networks[J]. arXiv:2006.13164, 2020. |
[76] | WANG Q, ZHENG Y, PAN P, et al. Multiple object tracking with correlation learning[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3876-3886. |
[77] |
LIU Q, CHEN D, CHU Q, et al. Online multi-object tracking with unsupervised re-identification learning and occlusion estimation[J]. Neurocomputing, 2022, 483: 333-347.
DOI URL |
[78] | PANG B, LI Y Z, ZHANG Y F, et al. TubeTK: adopting tubes to track multi-object in a one-step training model[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 6307-6317. |
[79] | REZATOFIGHI S H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,Jun 16-20, 2019. Piscataway: IEEE, 2019: 658-666. |
[80] |
LIN T Y, GOYAL P, GIRSHICK R B, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42: 318-327.
DOI URL |
[81] | SUN S J, AKHTAR N, SONG X Y, et al. Simultaneous detection and tracking with motion modelling for multiple object tracking[J]. arXiv:2008.08826, 2020. |
[82] | ZHOU X, KOLTUN V, KRÄHENBÜHL P. Tracking objects as points[J]. arXiv:2004.01177, 2020. |
[83] | TOKMAKOV P, LI J, BURGARD W, et al. Learning to track with object permanence[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 10840- 10849. |
[84] | WAN X Y, ZHOU S P, WANG J J, et al. Multiple object tracking by trajectory map regression with temporal priors embedding[C]// Proceedings of the 2021 ACM Multimedia Conference. New York: ACM, 2021: 1377-1386. |
[85] | WU J L, CAO J L, SONG L C, et al. Track to detect and segment: an online multi-object tracker[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12347-12356. |
[86] | DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 764-773. |
[87] | PENG J L, WANG C, WAN F B, et al. Chained-Tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[J]. arXiv:2007.14557, 2020. |
[88] | XU Y H, BAN Y T, DELORME G, et al. TransCenter: transformers with dense queries for multiple-object tracking[J]. arXiv:2103.15145, 2021. |
[89] | BERGMANN P, MEINHARDT T, LEAL-TAIXÉ L. Tracking without bells and whistles[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 941-951. |
[90] | 鄂贵, 王永雄. 基于R-FCN框架的多候选关联在线多目标跟踪[J]. 光电工程, 2020, 47(1): 29-37. |
E GUI, WANG Y X. Multi-candidate association online multi- target tracking based on R-FCN framework[J]. Opto-Electronic Engineering, 2020, 47(1): 29-37. | |
[91] | ZHANG J Y, ZHOU S P, CHANG X, et al. Multiple object tracking by flowing and fusing[J]. arXiv:2001.11180, 2020. |
[92] | ZHU J, YANG H, LIU N, et al. Online multi-object tracking with dual matching attention networks[C]// LNCS 11209: Proceedings of the 15th European Conference on Computer Vision, Sep 8-14, 2018. Cham: Springer, 2018: 379-396. |
[93] | CHU Q, OUYANG W L, LIU B, et al. DASOT: a unified framework integrating data association and single object tracking for online multi-object tracking[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 10672-10679. |
[94] | LIN T Y, DOLLÁR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944. |
[95] | ZHENG L Y, TANG M, CHEN Y Y, et al. Improving multiple object tracking with single object tracking[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2453-2462. |
[96] | VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017. |
[97] | MEINHARDT T, KIRILLOV A, LEAL-TAIXE L, et al. TrackFormer: multi-object tracking with transformers[J]. arXiv:2101.02702, 2021. |
[98] | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[J]. arXiv:2005.12872, 2020. |
[99] | ZENG F G, DONG B, WANG T C, et al. MOTR: end-to-end multiple-object tracking with transformer[J]. arXiv:2105.03247, 2021. |
[100] | SUN P Z, JIANG Y, ZHANG R F, et al. TransTrack: multiple-object tracking with transformer[J]. arXiv:2012.15460, 2020. |
[101] | SUN P Z, CAO J K, JIANG Y, et al. DanceTrack: multi-object tracking in uniform appearance and diverse motion[J]. arXiv:2111.14690, 2021. |
[102] | SUNDARARAMAN R, BRAGA C, MARCHAND É, et al. Tracking pedestrian heads in dense crowd[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3865-3875. |
[103] | MILAN A, LEAL-TAIXÉ L, REID I D, et al. MOT16: a benchmark for multi-object tracking[J]. arXiv:1603.00831, 2016. |
[104] | DENDORFER P, REZATOFIGHI H, MILAN A, et al. MOT20: a benchmark for multi object tracking in crowded scenes[J]. arXiv:2003.09003, 2020. |
[105] | VOIGTLAENDER P, KRAUSE M, OSEP A, et al. MOTS: multi-object tracking and segmentation[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7942-7951. |
[106] | CHEN G L, WANG W G, HE Z J, et al. VisDrone-MOT2021: the vision meets drone multiple object tracking challenge results[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 2839-2846. |
[107] |
WEN L Y, DU D W, CAI Z W, et al. UA-DETRAC: a new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020, 193: 102907.
DOI URL |
[108] |
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
DOI URL |
[109] | SUN S, AKHTAR N, SONG H S, et al. Deep affinity network for multiple object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 104-119. |
[1] | ZHANG Lu, LU Tianliang, DU Yanhui. Overview of Facial Deepfake Video Detection Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 1-26. |
[2] | WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong. Survey on 3D Human Pose Estimation of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. |
[3] | LIANG Jiali, HUA Baojian, LYU Yashuai, SU Zhenyu. Loop Invariant Code Motion Algorithm for Deep Learning Operators [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 127-139. |
[4] | WANG Jianzhe, WU Qin. Salient Object Detection Based on Coordinate Attention Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 154-165. |
[5] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[6] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
[7] | LI Dongmei, LUO Sisi, ZHANG Xiaoping, XU Fu. Review on Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968. |
[8] | REN Ning, FU Yan, WU Yanxia, LIANG Pengju, HAN Xi. Review of Research on Imbalance Problem in Deep Learning Applied to Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953. |
[9] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
[10] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[11] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[12] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[13] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[14] | ZHANG Haocong, LI Tao, XING Lidong, PAN Fengrui. Parallel Implementation of OpenVX Feature Extraction Functions in Programmable Processing Architecture [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1583-1593. |
[15] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/