Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (4): 810-825.DOI: 10.3778/j.issn.1673-9418.2209051
• Frontiers·Surveys • Previous Articles Next Articles
HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang
Online:
2023-04-01
Published:
2023-04-01
黄涛,李华,周桂,李少波,王阳
HUANG TAO, LI Hua, ZHOU Gui, LI Shaobo, WANG Yang. Survey of Research on Instance Segmentation Methods[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 810-825.
黄涛, 李华, 周桂, 李少波, 王阳. 实例分割方法研究综述[J]. 计算机科学与探索, 2023, 17(4): 810-825.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2209051
[1] LIN G, MILAN A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segment-ation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5168- 5177. [2] ZHAO Z Q, ZHENG P, XU S, et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212-3232. [3] MINAEE S, BOYKOV Y Y, PORIKLI F, et al. Image segm-entation using deep learning: a survey[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3523-3542. [4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1106-1114. [5] LIU H, YANG G, YANG L, et al. Anchor-based manifold binary pattern for finger vein recognition[J]. Science China Information Sciences, 2019, 62(5): 52104. [6] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//LNCS 8693: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 740-755. [7] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proce-edings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Wash-ington: IEEE Computer Society, 2016: 3213-3223. [8] NEUHOLD G, OLLMANN T, ROTA BULO S, et al. The mapillary vistas dataset for semantic understanding of street scenes[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5000-5009. [9] GUPTA A, DOLLAR P, GIRSHICK R. LVIS: a dataset for large vocabulary instance segmentation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5356-5364. [10] KUZNETSOVA A, ROM H, ALLDRIN N, et al. The open images dataset V4[J]. International Journal of Computer Vision, 2020, 128(7): 1956-1981. [11] 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2021, 17(1): 16-31. SU L, SUN Y X, YUAN S Z. A survey of instance segmentation research based on deep learning[J]. CAAI Transactions on Intelligent Systems, 2021, 17(1): 16-31. [12] 张继凯, 赵君, 张然, 等. 深度学习的图像实例分割方法综述[J]. 小型微型计算机系统, 2021, 42(1): 161-171. ZHANG J K, ZHAO J, ZHANG R, et al. Survey of image instance segmentation methods using deep learning[J]. Journal of Chinese Computer Systems, 2021, 42(1): 161-171. [13] HARIHARAN B, ARBELáEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//LNCS 8695: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 297-312. [14] ARBELáEZ P, PONT-TUSET J, BARRON J T, et al. Multi-scale combinatorial grouping[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 328-335. [15] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [16] HART P E, STORK D G, DUDA R O. Pattern classification[M]. New York: John Wiley & Sons, 2000. [17] NEUBECK A, VAN GOOL L. Efficient non-maximum supp-ression[C]//Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, Aug 20-24, 2006. Washington: IEEE Computer Society, 2006: 850-855. [18] PINHEIRO P O, COLLOBERT R, DOLLáR P. Learning to segment object candidates[J]. arXiv:1506.06204, 2015. [19] PINHEIRO P O, LIN T Y, COLLOBERT R, et al. Learning to refine object segments[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amste-rdam, Oct 11-14, 2016. Cham: Springer, 2016: 75-91. [20] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587. [21] LIU L, OUYANG W, WANG X, et al. Deep learning for generic object detection: a survey[J]. International Journal of Computer Vision, 2020, 128(2): 261-318. [22] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-Net classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [23] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1): 142-158. [24] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440- 1448. [25] WANG X, SHRIVASTAVA A, GUPTA A. A-fast-RCNN: hard positive generation via adversary for object detection[C]//Proceedings of the 2017 IEEE Conference on Comp-uter Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2606-2615. [26] LI J, LIANG X, SHEN S M, et al. Scale-aware fast R-CNN for pedestrian detection[J]. IEEE Transactions on Multi-media, 2017, 20(4): 985-996. [27] 黄继鹏, 史颖欢, 高阳. 面向小目标的多尺度Faster-RCNN 检测算法[J]. 计算机研究与发展, 2019, 56(2): 319-327. HUANG J P, SHI Y H, GAO Y. Multi-scale Faster-RCNN algorithm for small object detection[J]. Journal of Computer Research and Development, 2019, 56(2): 319-327. [28] MOESLUND T B, GRANUM E. A survey of computer vision-based human motion capture[J]. Computer Vision and Image Understanding, 2001, 81(3): 231-268. [29] WANG K, DONG Y, BAI H, et al. Use fast R-CNN and cascade structure for face detection[C]//Proceedings of the 2016 Visual Communications and Image Processing, Chengdu, Nov 27-30, 2016. Piscataway: IEEE, 2016: 1-4. [30] HSU S C, HUANG C L, CHUANG C H. Vehicle detection using simplified fast R-CNN[C]//Proceedings of the 2018 International Workshop on Advanced Image Technology, Chiang Mai, Jan 7-9, 2018. Piscataway: IEEE, 2018: 1-3. [31] 任少卿. 基于特征共享的高效物体检测[D]. 合肥: 中国科学技术大学, 2016. REN S Q. Efficient object detection based on feature shar-ing[D]. Hefei: University of Science and Technology of China, 2016. [32] ZHU C, ZHENG Y, LUU K, et al. CMS-RCNN: contextual multi-scale region-based CNN for unconstrained face detec-tion[M]//BHANU B, KUMAR A. Deep Learning for Bio-metrics. Berlin, Heidelberg: Springer, 2017: 57-79. [33] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. Interna-tional Journal of Computer Vision, 2013, 104(2): 154-171. [34] VAN DE SANDE K E A, UIJLINGS J R R, GEVERS T, et al. Segmentation as selective search for object recognit-ion[C]//Proceedings of the 2011 IEEE International Confe-rence on Computer Vision, Barcelona, Nov 6-13, 2011. Wash-ington: IEEE Computer Society, 2011: 1879-1886. [35] K?HLER C, SOFKA W, GRIMPE C. Selective search, sectoral patterns, and the impact on product innovation performance[J]. Research Policy, 2012, 41(8): 1344-1356. [36] REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal net-works[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2015, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 91-99. [37] TANG P, WANG X, WANG A, et al. Weakly supervised region proposal network and object detection[C]//LNCS 11215: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 370-386. [38] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Confer-ence on Computer Vision, Venice, Oct 22-29, 2017. Washin-gton: IEEE Computer Society, 2017: 2980-2988. [39] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogn-ition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 770-778. [40] LIN T Y, DOLLáR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944. [41] LONG J, SHELHAMER E, DARRELL T. Fully convol-utional networks for semantic segmentation[J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651. [42] DAI J F, HE K M, LI Y, et al. Instance-sensitive fully conv-olutional networks[C]//LNCS 9910: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 534-549. [43] VUOLA A O, AKRAM S U, KANNALA J. Mask-RCNN and U-Net ensembled for nuclei segmentation[C]//Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging, Venice, Apr 8-11, 2019. Piscataway: IEEE, 2019: 208-212. [44] CHEN L C, HERMANS A, PAPANDREOU G, et al. Mask-Lab: instance segmentation by refining object detection with semantic and direction features[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington:IEEE Computer Society, 2018: 4013-4022. [45] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Comp-uter Society, 2018: 8759-8768. [46] KIM S W, KOOK H K, SUN J Y, et al. Parallel feature pyramid network for object detection[C]//LNCS 11209: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham Springer, 2018: 239-256. [47] GONG T, CHEN K, WANG X, et al. Temporal ROI align for video object recognition[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applications of Artificial Intelli-gence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 1442-1450. [48] VU T, KANG H, YOO C D. SCNet: training inference sample consistency for instance segmentation[C]//Procee-dings of the 35th AAAI Conference on Artificial Intellig-ence, the 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 2701-2709. [49] ZANG Y H, HUANG C, LOY C C. FASA: feature augmen-tation and sampling adaptation for long-tailed instance segm-entation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 3437-3446. [50] TIAN Z, SHEN C H, WANG X L, et al. BoxInst: high-perf-ormance instance segmentation with box annotations[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscat-away: IEEE, 2021: 5443-5452. [51] ZHANG G, LU X, TAN J R, et al. RefineMask: towards high-quality instance segmentation with fine-grained feat-ures[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 6861-6869. [52] LIU S, JIA J Y, FIDLER S, et al. SGN: sequential grouping networks for instance segmentation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3516-3524. [53] GAO N Y, SHAN Y H, WANG Y P, et al. SSAP: single-shot instance segmentation with affinity pyramid[C]//Proce-edings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 642-651. [54] DE BRABANDERE B, NEVEN D, VAN GOOL L. Sema-ntic instance segmentation with a discriminative loss funct-ion[J]. arXiv:1708.02551, 2017. [55] FATHI A, WOJNA Z, RATHOD V, et al. Semantic instance segmentation via deep metric learning[J]. arXiv:1703.10277, 2017. [56] KE L, DANELLJAN M, LI X, et al. Mask transfiner for high-quality instance segmentation[J]. arXiv:2111.13673, 2021. [57] FINKEL R A, BENTLEY J L. Quad trees a data structure for retrieval on composite keys[J]. Acta Informatica, 1974, 4(1): 1-9. [58] HU J, CAO L, LU Y, et al. ISTR: end-to-end instance segm-entation with transformers[J]. arXiv:2105.00637, 2021. [59] BOLYA D, ZHOU C, XIAO F, et al. YOLACT: real-time instance segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9156-9165. [60] BOLYA D, ZHOU C, XIAO F, et al. YOLACT++: better real-time instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(2): 1108-1121. [61] DAI J F, QI H Z, XIONG Y W, et al. Deformable convo-lutional networks[C]//Proceedings of the 2017 IEEE Intern-ational Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 764-773. [62] HURTIK P, MOLEK V, HULA J, et al. Poly-YOLO: higher speed, more precise detection and instance segmentation for YOLOv3[J]. Neural Computing and Applications, 2022, 34(10): 8275-8290. [63] WANG X H, ZHAO K, ZHANG R X, et al. ContrastMask: contrastive learning to segment every thing[C]//Procee-dings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 11594-11603. [64] XIE E Z, SUN P Z, SONG X G, et al. PolarMask: single shot instance segmentation with polar representation[C]//Proceedings of the 2020 IEEE/CVF Conference on Comp-uter Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 12190-12199. [65] GóMEZ L, KARATZAS D. Textproposals: a text-specific selective search algorithm for word spotting in the wild[J]. Pattern Recognition, 2017, 70: 60-74. [66] WANG X L, KONG T, SHEN C H, et al. SOLO: segm-enting objects by locations[C]//LNCS 12363: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 649-665. [67] 李晓筱, 胡晓光, 王梓强, 等. 基于深度学习的实例分割研究进展[J]. 计算机工程与应用, 2021, 57(9): 60-67. LI X X, HU X G, WANG Z Q, et al. Survey of instance segmentation based on deep learning[J]. Computer Engin-eering and Applications, 2021, 57(9): 60-67. [68] ZENG L, SABAH M. EOLO: embedded object segment-ation only look once[J]. arXiv:2004.00123, 2020. [69] WANG X, ZHANG R, KONG T, et al. SOLOv2: dynamic and fast instance segmentation[J]. arXiv:2003.10152, 2020. [70] CHEN X L, GIRSHICK R B, HE K M, et al. TensorMask: a foundation for dense object segmentation[C]//Procee-dings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway:IEEE, 2019: 2061-2069. [71] CHEN H, SUN K, TIAN Z, et al. BlendMask: top-down meets bottom-up for instance segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 8570-8578. [72] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convol-utional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9626-9635. [73] KIRILLOV A, WU Y, HE K, et al. PointRend: image segmentation as rendering[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 9796-9805. [74] SURESHA M, KUPPA S, RAGHUKUMAR D S. Point-Rend segmentation for a densely occluded moving object in a video[C]//Proceedings of the 2021 4th International Conference on Computational Intelligence and Communication Technologies, Sonepat, Jul 3, 2021. Piscataway: IEEE, 2021: 282-287. [75] FANG Y, YANG S, WANG X, et al. QueryInst: parallelly supervised mask query for instance segmentation[J]. arXiv: 2105.01928, 2021. [76] ZHANG T, WEI S Q, JI S P. E2EC: an end-to-end contour-based method for high-quality high-speed instance segmen-tation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans,Jun 18-24, 2022. Piscataway: IEEE, 2022: 4433-4442. [77] SHAFIQ M, GU Z. Deep residual learning for image recognition: a survey[J]. Applied Sciences, 2022, 12(18): 8972. [78] QI L, WANG Y, CHEN Y, et al. PointINS: point-based inst-ance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6377-6392. [79] YAN Z, YANG X, CHENG K T. Enabling a single deep learning model for accurate gland instance segmentation: a shape-aware adversarial learning framework[J]. IEEE Tran-sactions on Medical Imaging, 2020, 39(6): 2176-2189. [80] NURMAINI S, RACHMATULLAH M N, SAPITRI A I, et al. Accurate detection of septal defects with fetal ultra-sonography images using deep learning-based multiclass inst-ance segmentation[J]. IEEE Access, 2020, 8: 196160-196174. [81] LU J, JIA H, LI T, et al. An instance segmentation based framework for large-sized high-resolution remote sensing images registration[J]. Remote Sensing, 2021, 13(9): 1657. [82] SU H, WEI S, LIU S, et al. HQ-ISNet: high-quality instance segmentation for remote sensing imagery[J]. Remote Sensing, 2020, 12(6): 989. [83] KUMAR D, ZHANG X L. Improving more instance segmentation and better object detection in remote sensing imagery based on cascade mask R-CNN[C]//Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Jul 11-16, 2021. Piscataway: IEEE, 2021: 4672-4675. [84] WU Z, HOU B, REN B, et al. A deep detection network based on interaction of instance segmentation and object detection for SAR images[J]. Remote Sensing, 2021, 13(13): 2582. [85] ZHANG T, ZHANG X. A mask attention interaction and scale enhancement network for SAR ship instance segmen-tation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [86] LI Q Y, MOU L C, HUA Y S, et al. Instance segmentation of buildings using keypoints[C]//Proceedings of the 2020 IEEE nternational Geoscience and Remote Sensing Symp-osium, Waikoloa, Sep 26-Oct 2, 2020. Piscataway: IEEE,2020: 1452-1455. [87] FANG X, LI Q, ZHU J, et al. Sewer defect instance segm-entation, localization, and 3D reconstruction for sewer floating capsule robots[J]. Automation in Construction, 2022, 142: 104494. [88] TU Z, WU S, KANG G, et al. Real-time defect detection of track components: considering class imbalance and subtle difference between classes[J]. IEEE Transactions on Instru-mentation and Measurement, 2021, 70: 1-12. [89] LI B, WANG T, HU Z D, et al. Two-level model for detec-ting substation defects from infrared images[J]. Sensors, 2022, 22(18): 6861. [90] XU Y, LI D, XIE Q, et al. Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN[J]. Measurement, 2021, 178: 109316. [91] ROSAS-ARIAS L, BENITEZ-GARCIA G, PORTILLO-PORTILLO J, et al. Fast and accurate real-time semantic segmentation with dilated asymmetric convolutions[C]//Proceedings of the 25th International Conference on Pattern Recognition, Milan, Jan 10-15, 2021. Piscataway: IEEE, 2021: 2264-2271. [92] DING X F, SHEN C M, CHE Z P, et al. SCARF: a semantic constrained attention refinement network for semantic segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 3002-3011. [93] MORDAN T, THOME N, HENAFF G, et al. End-to-end learning of latent deformable part-based representations for object detection[J]. International Journal of Computer Vision, 2019, 127(11): 1659-1679. [94] LI G F, YANG Y F, QU X D. Deep learning approaches on pedestrian detection in hazy weather[J]. IEEE Transactions on Industrial Electronics, 2019, 67(10): 8889-8899. [95] ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1): 43-76. [96] FANG H S, SUN J H, WANG R Z, et al. InstaBoost: boosting instance segmentation via probability map guided copy-pasting[C]//Proceedings of the 2019 IEEE/CVF Inter-national Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 682-691. [97] GHIASI G, CUI Y, SRINIVAS A, et al. Simple copy-paste is a strong data augmentation method for instance segmen-tation[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 2918-2928. [98] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 833-851. [99] XIAN Y Q, CHOUDHURY S, HE Y, et al. Semantic proj-ection network for zero-and few-label semantic segmen-tation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 8256-8265. |
[1] | WANG Wensen, HUANG Fengrong, WANG Xu, LIU Qinglin, YI Boheng. Overview of Visual Inertial Odometry Technology Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 549-560. |
[2] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
[3] | JIAO Lei, YUN Jing, LIU Limin, ZHENG Bofei, YUAN Jingshu. Overview of Closed-Domain Deep Learning Event Extraction Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 533-548. |
[4] | ZHOU Yan, WEI Qinbin, LIAO Junwei, ZENG Fanzhi, FENG Wenjie, LIU Xiangyu, ZHOU Yuexia. Natural Scene Text Detection and End-to-End Recognition: Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 577-594. |
[5] | LI Mingyang, CHEN Wei, WANG Shanshan, LI Jie, TIAN Zijian, ZHANG Fan. Survey on 3D Reconstruction Methods Based on Visual Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 279-302. |
[6] | WU Xin, XU Hong, LIN Zhuosheng, LI Shengke, LIU Huilin, FENG Yue. Review of Deep Learning in Classification of Tongue Image [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 303-323. |
[7] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin, JI Changqing. Review of Chinese Named Entity Recognition Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 324-341. |
[8] | TONG Hang, YANG Yan, JIANG Yongquan. Multi-head Self-attention Neural Network for Detecting EEG Epilepsy [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 442-452. |
[9] | WANG Yan, LYU Yanping. Hybrid Deep CNN-Attention for Hyperspectral Image Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395. |
[10] | ZHANG Lu, LU Tianliang, DU Yanhui. Overview of Facial Deepfake Video Detection Methods [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 1-26. |
[11] | WANG Shichen, HUANG Kai, CHEN Zhigang, ZHANG Wendong. Survey on 3D Human Pose Estimation of Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87. |
[12] | LIANG Jiali, HUA Baojian, LYU Yashuai, SU Zhenyu. Loop Invariant Code Motion Algorithm for Deep Learning Operators [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 127-139. |
[13] | WANG Jianzhe, WU Qin. Salient Object Detection Based on Coordinate Attention Feature Pyramid [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 154-165. |
[14] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[15] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/